
Learning Expressive Contextual Grammars in Lambda

Calculus

Lucas E. Morales {lucasem}

1 Introduction

Program induction can be approached as a search on a stochastic grammar over
programs. Programs may be represented as an expression defined in a grammar
where all terminal nodes are valid components for a program interpreter, and where
invalid programs cannot be produced. The class of valid inputs for the program
interpreter is the program language.

In the simplest case, the program grammar itself consists only of typed literals
which themselves constitute the primitive lexicons of the program language. This
approach is sufficient for computation, as at least one Turing complete program
language can be entirely defined by a simply typed grammar [Turing, 1936][Church,
1941][Steedman, 2000]. We refer to this approach as the primitive grammar. Though
sufficient, the primitive grammar as a search space over programs given a particular
domain of program learning tasks lacks does not utilize any domain-specific knowl-
edge which would aid in solving tasks quickly and expressively. Domains-specific
knowledge, then, can be considered a grammatical construct rather than one of the
program language itself — and its purpose is to aid in the expressivity of the search
space.

In addition to this perspective on domain-specific knowledge, it follows that
different domains should yield different expressive program grammars. The set of
non-primitive grammars are therefore defined in a contextual manner, where the
choice of grammar depends on the domain of the task in question. We refer to
this class of non-primitive grammars as contextual grammars. In this paper, we
introduce a new system designed to learn contextual grammars.

2 Program Language and Grammars

For simplicitly and completeness we use a simply typed variable-free lambda calcu-
lus — a variant of typed combinatory logic — as the foundation for the program
language [Liang et al., 2010]. We define “curried” primitives of certain combinators

1

and of other elements which are natural for whatever tasks the program may need
to solve. We use the following primitive combinators:

Ix → x

Sfgx → (fx)(gx)

Cfgx → (fx)g

Bfgx → f(gx)

These primitive combinators permit a variable-free representation, where execu-
tion of the program with certain inputs will route the inputs to their appropriate
destination in the program structure. This is because programs themselves are just
combinators.

We then represent these programs as binary trees where every non-terminal node
refers to a function application of its left child with its right child. See diagram (c)
in Figure 1 for an example of a program with this representation. The expansion of
the example x ⊢ x2 + 1 is as follows:

C (B + (S ∗ I)) 1 x → (B + (S ∗ I) x) 1
→ + (S ∗ I x) 1

→ + ((∗ x) (I x)) 1

→ + (∗ x x) 1

Extensionally, the program language is simply typed. To effectively use each
primitive combinator as an individual lexical item, we permit polymorphic types.
The non-terminal nodes in the binary tree representation are typed applications of
combinators. The different type variants are primitive T0 (e.g. T0 = {real,boolean}),
variable, or functional. A functional type τ1 → τ2 refers to a relation from a source
type τ1 to a destination type τ2.

+

∗ x

x

1
C

B

+ S

∗ I

1
C

B +

S ∗

I

1

(a) (b) (c)

Figure 1: Binary tree representations for λx. + (∗xx)1, equivalent to
the combinatory logic expression “C(B + (S ∗ I))1”: (a) lambda calcu-
lus; (b) variable-free, with arrows to visualize the path of an input; (c)
combinators as terminals.

2

The primitive grammar, then, follows trivially from this description of the pro-
gram language as a Combinatory Categorical Grammar [Steedman, 2000]. Every
contextual grammer simply introduces additional primitive combinators, where each
new primitive combinator is some non-primitive combinator in the primitive gram-
mar.

3 Learning an Expressive Grammar

In this section, we outline an iterative procedure to construct an expressive contex-
tual grammar given a set of tasks in a single program learning domain. Each task
is a function which takes a program and returns a truth value of whether the task
was solved. The task can be conceptualized as a pairing of inputs and output where
the program must reproduce the output given the corresponding inputs.

The first iteration starts with the primitive grammar, and each subsequent it-
eration acts on the grammar learned in the previous iteration. In each iteration,
probable expressions that solve tasks are found and used to construct a new gram-
mar.

3.1 Stochastic Extension

We follow the E.C. algorithm described in [Dechter et al., 2013] to define and enu-
merate a stochastic grammar over programs. For a language L with primitive com-
binators C = {ci}ni=1 fitting the description in the previous section, the probability
of an expression is the product of the probabilities of each terminal in its tree. The
stochastic grammar only needs to associate each primitive combinator of L with a
distribution D = {pi}ni=1 of prior probabilities for each combinator.

The probability of a primitive combinator c in a terminal node depends on the
requesting type τ(c) according to the type its parent requested when the terminal
was selected. For example, if the requesting type is the functional τ0 → Bool from
a variable type to a boolean, then (< 2) is applicable (its type is Real → Bool)
but (+ 2) is not (its type is Real → Real). If the requesting type was τ0 → τ0, then
(+ 2) would be applicable and (< 2) would not. The set of primitive combinators
whose types unify with τ is Cτ .

An expression e ∈ L with the set of primitive combinators in its terminal nodes
Ce has probability P(e) =

∏
c∈Ce

P(c|τ(c)). The posterior is determined using Bayes’
rule:

P(ci|τ(ci)) =
pi∑

cj∈Cτ(ci)
pj

An expression is most probable if it maximizes the likelihood of each terminal prim-
itive. For a set of expressions EN of finite size N , computing the exact maximizer is
an explosive task that is in need of optimization. We use the maximum likelihood

3

estimator from the E.C. algorithm, which quickly estimates a combinator’s likeli-
hood using the frequency with which it unifies with the requesting type of terminals
in EN .

The E.C. algorithm also has a method for constructing EN , which we adopt.
This method, referred to as the best-first enumeration of programs, is essentially a
recursive procedure which treats every program, much like the binary tree represen-
tation shown in Section 2, as either a primitive combinator or a both a left-program
and right-program (where the left program is applied to the right program). This
procedure maintains type information and probabilties as it steps down a tree of
possible programs in the path of maximum probability. While it enumerates possible
programs it also keeps record of the probabilities assigned to each terminal — and
for not-yet-expanded nodes, it associates a probability according to a guaranteed
upper-bound probability which applies to all trees.

3.2 Selecting Expressive Combinators and Updating the Grammar

The E.C. algorithm, mentioned above, also describes a method for finding the most
compressive set of solutions after enumerating the bestN programs, which we adopt.
The goal of compressibility results in a choice of modular combinators that are
expressive for the particular set of tasks which are solved by expressions in EN .
Compression, in this case, is measured inversely with number of unique sub-trees
in the expressions which solved a task. Tasks for which only one solution was
produced must identify with that solution. Tasks which had many solutions in EN
then identify according to whichever expression maximizing the compression over the
entire solution set. An exact solution to this problem is computationally infeasible,
so rather than computing the number of unique trees in the complete solution set,
we choose a solution to identify with the particular task by computing the number
of unique trees only in the preceding task’s solution and the solution candidate for
the task. This method was shown effective in [Dechter et al., 2013].

We use the sequitur algorithm on the solution set produced above to construct
a new compressive grammar [Nevill-Manning and Witten, 1997]. The stochastic
extension for the new grammar is constructed by re-writing each solution according
to the new grammar’s rules and estimating the probabilities for each node production
in the solution set using the same approach described in the previous subsection.

4 Contextual Learning

The set of primitive combinators which define a program grammar lack structure
— they are simply a flat collection of distinct combinators. We abandon this core
idea in favor of a system inspired by intuitive traits of human cognition. We refer
to a set of combinators as an item of knowledge. A grammar must not be free
to use all items of knowledge: a particular context must motivate certain items of

4

knowledge to be readily available while setting others further apart, depending on
their relationships to those in contextual proximitiy.

We develop a novel framework for contextualizing knowledge in an abstract man-
ner. Knowledge is represented as distinct atoms of information and their relations
in the structure of a connected network, which we refer to as the knowledge network.
This network is constructed by preferential “least effort” attachment [Barabási and
Albert, 1999][i Cancho and Solé, 2003], where a new item of knowledge joins the
network with relations to the contextual knowledge from which it was learned. This
network is scale-free — it conforms to a mathematical pattern similar to that of
Zipf’s Law [Zipf, 1949], where the degrees of connectivity for nodes in the network
follow a class of power law distributions.

We use this framework iteratively where each iteration is a phase. Within each
phase lies many iterations of the expressive grammar learner described in the previ-
ous section. Each phase has a set of tasks which correspond to the same particular
domain of tasks, though different phases may refer to the same domain. At the end
of each phase, we interact with the knowledge network.

4.1 Abstraction on Grammars

Our framework is best conceptualized as a knowledge abstraction — on par with
typical non-hierarchical sets or addressed memory. We refer to a small motivated
subnet of the knowledge network as the context, which is constrained to always be
approximately scale-free. We provide a simple interface for interacting with knowl-
edge where all interactions either retrieve information related to the current context
or adjust the context within the knowledge network. The interactions are Get(),
Explore(), Orient(I), and Add(I), where I refers to an item of knowledge.
The Get() method returns the set of all items within the context. The Explore()
method is like Get(), but instead of only yielding items within the context, it addi-
tionally yields all items that are one edge away from the context. The Orient(I)
method moves the context with a focus around the specified item. The Add(I)
method automatically adds a new item of knowledge to the network, and adjusts
the context to include the new item. The automatic attachment follows a least-effort
procedure where a connection between the new node and another node Ij ∈ {Ii}ki=1

in the context (of size k) is established based on the result of a Bernoulli trial
parameterized by θj , which is calculated as

θj =
mj

M

where mj is the count of accesses to Ij since the last context-switch and where

M =
∑k

i=1mi is the total count of knowledge item accesses since the last context-
switch.

5

4.2 Interacting with Knowledge

The initial grammar employed by the grammar learner at the beginning of each
phase is defined using the set of combinators in the current context:

C =
∪

Get() =
k∪

i=1

Ii

At the end of each phase, we must determine whether the context should be adjusted
(and if so, where to adjust it) and whether to add a new item of knowledge. We
refer to the new set of combinators constructed by the grammar learner as C∗.

Consider the the set of combinators beyond the context:

C ′ =
∪

Explore()

If the most probable combinator ci in C∗ is also in C ′, we adjust the context ac-
cording to the item of knowledge which contains ci:

∃I.ci ∈ I.Orient(I)

We now recompute C ′ with the new state of the knowledge network. We check the
P most probable combinators in C∗, referred to as CP ⊆ C∗, for presence in C ′,
and add a new item of knowledge of every combinator not in C ′:

∃I.
(
I = CP \ C ′) .|I| > 0.Add(I)

The resulting system, parameterized by P , is such that the current context may
appropriately be identified as domain-specific knowledge, where an item knowledge
is a set of combinators which are used as primitives for a grammar defined on the
context.

5 Discussion and Future Work

In this paper, we introduced a system for learning expressive contextual grammars
in a variable-free variant of lambda calculus defined as a simply typed combinatory
logic. This system has yet to be implemented and tested to verify its utility in con-
structing expressive grammars in different problem domains. The novel knowledge
abstraction given in Section 4.1 could be used for contextual learning in other classes
of problems in artificial intelligence rather than just program induction: if items of
knowledge maintained records of which mechanisms could consume it (e.g. program
inductor), multiple mechanisms could be connected to the same network (and con-
fined to the same context), permitting a natural method for multi-modal learning.
For example, a sound texture mechanism and a vision mechanism could hear and see
rainfall and associate them in the same context, effectively resulting in a “symbol”

6

for the multi-model object of rainfall. Additionally, mechanisms could act, rather
than simply percieve, resulting in a production system which would act according
to its context. Finally, if communication between mechanisms were supported, hi-
erarchies of mechanisms could be constructed. In this case, the mechanisms would
be more fittingly referred to as agents [Minsky, 1988].

References

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.
science, 286(5439):509–512, 1999.

Alonzo Church. The calculi of lambda-conversion. Number 6 in Annals of Mathe-
matical Studies. Princeton University Press, 1941.

Eyal Dechter, Jonathan Malmaud, Ryan P Adams, and Joshua B Tenenbaum. Boot-
strap learning via modular concept discovery. In IJCAI, 2013.

Ramon Ferrer i Cancho and Ricard V Solé. Least effort and the origins of scaling
in human language. Proceedings of the National Academy of Sciences, 100(3):
788–791, 2003.

Percy Liang, Michael I Jordan, and Dan Klein. Learning programs: A hierarchi-
cal bayesian approach. In Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pages 639–646, 2010.

Marvin Minsky. Society of mind. Simon and Schuster, 1988.

Craig G. Nevill-Manning and Ian H. Witten. Identifying hierarchical strcture in
sequences: A linear-time algorithm. J. Artif. Intell. Res.(JAIR), 7:67–82, 1997.

Mark Steedman. The syntactic process, volume 24. MIT Press, 2000.

Alan Mathison Turing. On computable numbers, with an application to the entschei-
dungsproblem. J. of Math, 58(345-363):5, 1936.

George Kingsley Zipf. Human behavior and the principle of least effort: An intro-
duction to human ecology. Addison-Wesley, 1949.

7

