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Abstract

This thesis develops computational models of cognition with a focus on concept represen-
tation and learning. We start with brief philosophical discourse accompanied by empirical
findings and theories from developmental science. We review many formal foundations of
computation as well as modern approaches to the problem of program induction — the
learning of structure within those representations. We show our own research on program
induction focused on its application for language bootstrapping. We then demonstrate our
approach for augmenting a class of machine learning algorithms to enable domain-general
learning by applying it to a program induction algorithm. Finally, we present our own
computational account of concepts and cognition.
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of perception, as discussed in Section 5.4 Perception, memory, and cognition. 120

5-5 In the work of Section 4.6 Language bootstrapping, we “compressed” com-

mon code in (a) by creating reusable helper functions as in (b), making

empirically relevant concepts more accessible for future learning. We note

that the arithmetic and natural numbers assumed in this example may be

learned, and we remark that as discussed earlier in this chapter, an item like

“two” can exist as both a type (i.e. concept) or as an object (i.e. something

that inhabits a concept). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5-6 Multiplication of 78 by 3 using (a) repeated addition and (b) the lattice

method. These multiplication algorithms are commensurable as the latter

has an apparent logical construction derived from the former. . . . . . . . . 123

5-7 Conceptual change as type-level refactoring from a representation of natural

numbers that is (a) incremental, as in Peano arithmetic, to (b) digital, as in

the Arabic numeral system. Not shown are the corresponding implementa-

tions of addition (which is more efficient in the digital system for large num-

bers), number-word generation (e.g. speaking “twenty”), and other already-

established numerical operations. This code is written more concretely in

the Rust programming language because we think it is more illustrative and

expressive for this example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
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5-8 Repeated phyllotactic spirals according to the Fibonacci sequence, a natural

phenomenon demonstrated in sunflowers, pineapples, and other plant-life.

The number of petals in a flower is generally a Fibonacci number (e.g. the

lily flower has three petals, often repeated twice, and the buttercup typically

has five petals). When the petals repeat, they form two repeated spirals

(clockwise and counter-clockwise) each of which occurs a Fibonacci number

of times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5-9 Construction of the Red-Dog concept in a pure type system. Note that

while universal quantification is a feature of pure type systems, existential

quantification is not. However, it is nonetheless constructable as proven by

Geuvers [1993]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5-10 Construction of an interpretation of the Strange-Loop concept, a thesis

of Hofstadter [1979]. Here we assume the conjunction concept defined in

Figure 5-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5-11 A placeholder-filling construction for the concept of Darwinian evolution.

The first iteration provides a new symbol. The second iteration introduces

some notion of procreation (particularly sexual reproduction). The third

iteration further specifies that reproduction results in mutation. The fourth

iteration produces a preliminary idea of evolution, and the fifth iteration

introduces something external to the organisms (i.e. an environment) as a

factor in that process. We use [X] to denote collections of inhabitants of a

particular X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5-12 Descriptions whose lengths determine three measures of conceptual complex-

ity: (a) type-level, (b) object-level, and (c) runtime-level. If this examples

co-occurs with a representation like that of Figure 5-7b, measurements of

these complexities may demonstrate that it is an inferior representation and

would be replaced. (Notably, addition is runtime-logarithmic in a digital

representation whereas this incremental representation is runtime-linear.) . 131
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Chapter 1

Introduction

Our abilities to make sense of our experiences come from the powerful system of the human

mind, enabling us to identify causation, learn concepts, and acquire language. Reverse-

engineering the mind is an old problem with computational accounts arising as early as Boole

[1854]. We are in the privileged position of being fundamentally exposed to some aspects

of the mind: primarily, thought. Once identified, thought begets the question of what is

thought? A common direction begins with the notion of concepts, the units that constitute

thought. Acknowledging concepts then circularly begs the question, what are concepts?

While the question of the intrinsic nature of concepts is daunting and controversial, there

is consensus at the surface: whatever they may be, concepts (and hence, thoughts) are

fundamental to several psychological processes including the production of ideas, the storing

and recall of memory, decision-making, use of language, and learning.

In this thesis, we adopt the computational view of mind, accepting that there is a

fundamental similarity between computation and cognition. An obvious consequence of

this is that there should be some analogue between the production of thoughts and the

production of computational entities. There are many ways to take this direction of pursuit,

particularly those outlined by the levels of analysis from Marr [1982]: (i) the computational

level, which characterizes a problem with inputs in some environment and a method for

computing the solution; (ii) the algorithmic level, which describes more concretely the

representations and algorithms that arrive at such a solution; and (iii) the implementation

level, which specifies how such representations and algorithms are presented in the hardware

of a brain or machine.
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We take focus on the computational and algorithmic levels of analysis. Of pique interest

is the problem of learning. This has been explored by philosophers for millennia, but

only until recently with the advent of computing technology have the doors been opened

for science to regard learning as a class of computational problems and people as natural

computers that have evolved to solve them. Artificial intelligence, a field born from this

computational hypothesis, was popularized by the question of Turing [1950]: “Can machines

think?” Turing expresses that rather than building machines that can simulate an adult

human, an apparently insurmountable task, the simulation of a child would yield a machine

that could learn and effectively become an adult-level thinker. Our efforts aim to make sense

of how people — especially children — learn concepts and produce thought.

In Chapter 2, we present the problems of concept representation and concept learning in

a computational framing and briefly discuss theories of concepts justified by developmental

science to provide some empirical insight for these problems. In Chapter 3, we describe

different formal representations that each support some intuition of what concepts are and

what they can express. In Chapter 4, we present program induction as a perspective on

concept learning, outline different approaches taken to program induction primarily from

the artificial intelligence and machine learning communities, and present our own work

on program induction. Finally, in Chapter 5, we present our own computational account

of concepts and cognition based on (a) conceptual role semantics, a paradigm where the

meaning of concepts is derived from their role relative to other concepts; (b) program

induction; (c) types, a hierarchical and declarative perspective on computation; (d) Bayesian

sampling and inference; and (e) information theory.
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Chapter 2

Computational Framing of

Representation and Learning

Many aspects of cognition can be combined into a unified computational framework. Such

computational theories of cognition must account for both nativism and empiricism: there is

innate faculty which enables the learning of rich structures from number concepts to natural

language. To account for the development of adult cognition, there is some representational

system which is capable of permitting such sophisticated concepts to be learned. Hence the

focus on representation and learning, both of which must be understood in harmony such

that each may “bootstrap” or support the other — i.e. learning representations and using

representations to direct learning.

The language of thought (LOT) hypothesis proposes that thoughts are represented in

the mind as productions of a compositional mental language, that causal sequences of such

productions comprise mental processes, and that there is a correspondence between syntac-

tic complexity and semantic complexity [Fodor, 1975]. The compositional nature of thought

and the complexity of new thoughts have given the hypothesis much theoretical and empir-

ical support, though it often requires assumptions on the approach to semantics [Pylyshyn,

1980; Fodor and Pylyshyn, 1988; Feldman, 2000; Fass and Feldman, 2003; Goodman et al.,

2008; Kemp et al., 2008b; Kemp and Tenenbaum, 2009; Kemp, 2012; Ullman et al., 2012;

Piantadosi et al., 2012, 2016]. Many criticisms of this direction appeal to connectionism,

that symbolic operation is the apparent result of emergent latent structure from low-level

continuous spaces of pattern recognition [Rumelhart and McClelland, 1986; Fahlman and
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Hinton, 1987; Fodor and Pylyshyn, 1988; McClelland, 1995; Rogers and McClelland, 2004;

McClelland et al., 2010]. In this thesis, we assume there is such a mental representation as

posited by the LOT hypothesis, but we do not necessarily rule out connectionist approaches

under which such representation is emergent. For example, Piantadosi [2016] has presented

a theory on the computational origin of representation that is compatible with connec-

tionism where symbolic computational mechanisms are emergent. Furthermore, there is

no account for the origin of meaning in the LOT hypothesis. We adopt an approach to

meaning called conceptual role semantics (c.f. Chapter 5 Towards Formalized Conceptual

Role).

Science itself, as a sociological phenomenon, gives credence to the notion of mental

representation. The historical analyses of Kuhn [1965] demonstrated that there is incom-

mensurable distinction between concepts before and after scientific paradigm shifts. He

expressed that “normal science,” the common practice which occurs most often (and be-

tween crises and paradigm shifts), exploits the existing theories of a scientific discipline.

The scientific breakthroughs of Kepler, Darwin, and Maxwell were each triggered by obser-

vation of new phenomena that led these scientists to devise new theories and methods which

became paradigms for the fields they brought forth. Each of these new constructions were

built through placeholder structures which left details to be determined after an abstract

framework was developed, a form of conceptual “bootstrapping” [Carey, 2009].

The cognitive characterization of science provides a means for understanding what cogni-

tive processes may be present in children during cognitive development. A perspective called

“theory theory” or “child as scientist” holds that children possess concepts as structured

theories much like scientific conceptual structures, and that the construction and transfor-

mation of those theories determines conceptual development while semantics are derived

from such developed theories [Carey, 1985; Murphy and Medin, 1985; Gopnik and Meltzoff,

1997; Gopnik and Schulz, 2004; Schulz et al., 2008; Schulz, 2012a; Ullman et al., 2012].

These intuitive theories have abstract structure that is coherent and appeal to causality. At

the foundations of these theories is what developmental scientists call “core knowledge”: a

set of separable innate systems, whose existence have been heavily supported by empirical

evidence, which advance cognitive development along certain domains [Baillargeon, 1994;

Spelke, 1998; Spelke and Kinzler, 2007; Carey, 2009].

Computational frameworks based on the “child as scientist“ perspective have led to bet-
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ter accounts of human thought by leveraging technical achievements of machine learning

and Bayesian artificial intelligence [Tenenbaum et al., 2011]. A computational framework

of human learning should account for the construction of causal models that can explain

the world, rather than the recognition of patterns of observation as popularized in ma-

chine learning. By building intuitive theories with compositional structure, such a frame-

work should model inductive biases that account for rapid acquisition and generalization of

knowledge when confronted with new complex tasks [Lake et al., 2017]. Adopting a compu-

tational theory of cognition gives us the opportunity to concretely formulate key questions

in cognitive science, such as:

• How are concepts individuated?

• Why are concepts useful?

• What is the representation of concepts?

• How does concept learning manifest?

• By what procedures are concepts learned?

• To what extent is the representation of concepts learned?

• To what extent are learning procedures for concepts learned?

• Where do concepts meet perception?

We attempt to answer each of these questions with our own framework presented in Chap-

ter 5 Towards Formalized Conceptual Role.
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Chapter 3

Representations

3.1 Overview

In this chapter, we describe different substrates on which concepts are represented and

upon which concepts are learned. Each section is devoted to a different substrate, or

representation. We begin each section with a high-level description of the representation

— what distinguishes it from others and examples of concepts constructed within it —

before getting into the formalism of the representation. In this chapter, there will be little

discussion of learning within these representations: that will be covered in the next chapter.

We start in Section 3.2 with a representation that is very different from the others: ar-

tificial neural networks. The connectionist movement in cognitive science led to a growth of

research on artificial neural networks, as they could behave intelligently without necessitat-

ing symbolic operation akin to conventional computers [Rumelhart and McClelland, 1986;

Fahlman and Hinton, 1987; Fodor and Pylyshyn, 1988]. This approach does not postulate

a “language of thought;” it instead relies on causal flow of information in continuous spaces

in which pattern recognition and statistical learning may result in the emergence of latent

structure from the sub-symbolic substrate [Fodor, 1975; McClelland, 1995]. There is agree-

ment in cognitive science and artificial intelligence that the ability to learn and represent

complex structure is essential — something that connectionist approaches have, especially

recently, been shown to achieve [Gopnik and Meltzoff, 1997; Rogers and McClelland, 2004;

McClelland et al., 2010; Tenenbaum et al., 2011; Schmidhuber, 2015; LeCun et al., 2015;

Goodfellow et al., 2016]. Because structured representation is, in effect, emergent under

this paradigm, we analyze what the recent work has demonstrated in Chapter 4 Concept
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Learning by Design: Program Induction (c.f. Section 4.4.9 Neural network optimization).

In subsequent sections, we look at symbolic representations starting with context-free

grammars in Section 3.3. While context-free grammars are useful for describing the syn-

tax of formal language, they are fundamentally insufficient for providing a general-purpose

substrate upon which computation may occur. We therefore move attention towards rep-

resentations that satisfy this computational expressive capability.

A universal computer is a machine that can compute anything which is computable1.

In Alan Turing’s seminal work “Computing Machinery and Intelligence,” he posits that a

sufficiently-programmed universal computer could convince a person that it is human [Tur-

ing, 1950]. He further postulates that such a machine could be programmed with innate

knowledge much like a child, including the faculty to learn, and that it could learn what

people learn through developmental experience2. We direct attention to such represen-

tations that correspond to universal computers, starting with two classical formulations:

combinatory logic in Section 3.4, followed by lambda-calculus in Section 3.5. We follow

these classical representations with term rewriting systems in Section 3.6. For the three

of these representations, we also give exposition on typed variants. Types constrain search

making learning more tractable3, and they provide declarative means of expressing compu-

tational properties. Finally, we look at powerful type systems in Section 3.7 which allow

for unambiguous declarative expression of rich concepts while providing first-class means

for finding procedural implementations of those concepts.

3.2 Neural networks

A modern discussion of representation is incomplete without mention of neural networks,

and in particular, deep neural networks that are learned [Goodfellow et al., 2016]. Deep

learning allows representations to be learned, where those representations are expressed

in terms of simpler learned representations. For example, the multilayer perceptron of

Figure 3-1 effectively produces a new representation after each layer: when trained, the

1 A Turing machine is a universal computer, as is any machine which can mimic a Turing machine (c.f.
Church-Turing thesis; Church [1936]; Turing [1937]).

2 There is a caveat that real-world digital computers have finite limits, but it is relieved in the under-
standing that — particularly with the passage of time and the advancement of technology — these limits
are not restrictive.

3 Constraining search does not necessarily imply more tractable learning — there is an assumption in
this statement that learning is a product of search in the space of valid statements of these representations.
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intermediate layers determine a latent representation that is not set by the designer of

the network. Neural networks are usually designed to be differentiable functions so that

they may be trained with gradient descent as we’ll discuss in Section 4.4.9 Neural network

optimization.
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Figure 3-1: A multilayer perceptron with three layers. Weights for multi-
plication are assumed in edges leading into summation.

Neural networks are composed of layers of neurons, where each neuron is a pair (w, σ)

of weight vector w and nonlinearity σ. A neuron that operates on vector x computes

the output σ(w⊤x). The nonlinearity may be thought of as a thresholding function so

that a neuron’s may “activate” or not depending on its input. Because a desired feature

of neural networks is that they are differentiable, the nonlinearity is typically either the

standard logistic sigmoid function, the hyperbolic tangent function, or the rectified linear

unit (each of which is differentiable), shown in Figure 3-2. A common variation of the

neuron introduces a bias parameter, so that it computes σ(w⊤x+ b)4.

A layer in a neural network is a set of neurons that have the same input. Typically,

each neuron in a layer uses the same activation function, allowing a layer to be succinctly

described by the triple (W,b, σ) where W is the matrix where each row is the weight

vector for each neuron, b is a vector comprised of the biases for each neuron, and σ is the

nonlinearity. Taking σ(v) to be the vector produced by elementwise transformation of v by

σ, a layer given input x computes output σ(Wx+ b).

A feedforward neural network is a sequence of layers where each layer receives the
4 This is functionally equivalent to simply using a different nonlinearity. Nonetheless, it is useful for

learning procedures which manipulate parameters of a network but not the nonlinearities themselves.

27



(a) Sigmoid (b) Hyperbolic tangent (c) Rectified linear unit

Figure 3-2: Common differentiable nonlinearities. (a) The sigmoid logistic
function acts like an “on/off” switch for the neuron. (b) The hyperbolic
tangent function is like a “good/bad” switch because it sends negative signal
where the sigmoid gives no signal. (c) The rectified linear unit has an “off”
state like the sigmoid, but provides almost-linear activation when there is
sufficiently large input.

preceding layer’s output as its input. Using parenthesized superscripts to denote the layer

number in sequence, a feedforward neural network’s behavior is defined by the following

equations without input x and output y and L layers:

h(0) = x

h(ℓ) = σ(ℓ)
(
W(ℓ)h(ℓ−1) + b(ℓ)

)
y = h(L)

The network’s entire operation is written y = fθ(x) where θ refers to the parameters

θ = {(W(ℓ),b(ℓ))}Lℓ=1.

Recurrent neural networks, such as the one shown in Figure 3-3 have discrete time steps.

These recurrent neural networks may often be understood by unfolding them: copying the

network across time steps and make appropriate connections between time steps. If we let

ht be the output of a recurrent unit gθ at time step t and require some initial value h0, then

we can express the recurrent network’s computation as:

yt = gθ(xt,ht−1)

Traditional recurrent neural networks often lead to a vanishing gradient during training

via gradient descent, leading to rapid convergence on local minima which may be far from

optimal. There are many techniques to mitigate this, most notably are the long short-

term memory (LSTM) units which provide a mechanism for “forgetting” older values in a
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recurrent cell [Hochreiter and Schmidhuber, 1997].
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Figure 3-3: A recurrent neural network.

Deep recurrent neural networks provide a means for learning a latent representation

of programs [Neelakantan et al., 2015; Reed and De Freitas, 2015; Devlin et al., 2017b;

Chen et al., 2018]. By programs, we refer to more than functions from real-valued vectors

to real-valued vectors: these programs may operate on symbolic and otherwise-structured

data such as strings, lists, and trees.

3.3 Context-free grammars

Context-free grammars, or CFGs, are a method of describing languages based on the produc-

tion of strings, or “sentences”, in a language [Chomsky, 1956; Sipser, 2006]. The languages

that are producible by CFGs — context-free languages — are famously contrasted with

regular languages which are describable with finite-state automata5, such as the one shown

in Figure 3-4. Context-free grammars have a recursive property which permits expressive

descriptions of certain languages without having to resort to an upper-bound on sentence

length6. Context-free grammars were invented by Noam Chomsky during his study of hu-

man languages: their use aided in a formal understanding of the relationships between

nouns, verbs, prepositions, and other linguistic phenomena. A context-free grammar for a

5 A finite-state automaton (FSA) is a machine described by a set of states, transitions between states
upon input in some alphabet, an initial state, and a set of “accepting” states. A FSA associated with a
regular language will yield an accepting state for some input if and only if the input is a sentence in the
language.
In contrast, every CFG can be parsed (in linear time, as with regular grammars by FSAs) by a machine
called a pushdown automaton (PDA). PDAs are like FSAs, but there is a persistent stack which transitions
may manipulate (by push/pop) — that is, transitions depend on the current state, current input, and the
top of the stack, yielding a new state and a replacement for the item that was read from the stack. PDAs
may use the empty stack item ε (to move without reading from the stack and push a new item onto the
stack, or to remove an item from the stack) as well the empty input ε which may be assumed at any time.

6 Every context-free language, if restricted to a particular finite limit on length, is also a regular language.
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fragment of the English language is shown in Figure 3-5.

qevenstart qodd

0
1

0

1
(a)

odd→ 0 odd | 1 even
even→ 0 even | 1 odd | ε

(b)

Figure 3-4: A language over all strings with an odd number of 1s. (a) A
finite-state automaton which accepts strings in this language; (b) the regular
grammar which produces sentences in this languages.

S → NP VP
NP→ CN | CN PP
VP→ CV | CV PP
PP→ P CN
CN→ A N
CV→ V | V NP
A → a | the
N → student | robot | book
V → interrogates | likes | sees
P → near

(a)
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N

student

VP

CV

V

interrogates

NP
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N

book

(b)

Figure 3-5: (a) A fragment of the English language as a CFG, and (b)
the parse tree for a production in that language. The acronyms of each
nonterminal in order of rule definition are: Sentence, Noun Phrase, Verb
Phrase, Prepositional Phrase, Complex Noun, Complex Verb, Article, Noun,
Verb, Preposition.

CFGs are used in the study of intuitive theories — knowledge that organizes the world

into causal structure [Goodman et al., 2006; Tenenbaum et al., 2007; Ullman, 2015]. The

application of CFGs for these studies often relies on an interpretive layer which determines

the production rules of a CFG and in which the semantics of a sentence are determined.

For this reason, we believe that while CFGs provide a good representation for the study

of how concepts may be constructed from some presupposed structure, they are lacking in

expressive power for computation. By this we mean primarily that the interpretive layer

should also be represented, and CFGs do not provide that.

Formally, a CFG (Σ, V,R, S) is defined by a set of terminals, or “alphabet”, Σ, a set
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of nonterminals V disjoint from Σ, a set of production rules R, and a starting nonterminal

S ∈ V . A production rule for a CFG has a left-hand side nonterminal and right-hand side

sequence of terminals and nonterminals. We adopt the notation that a set of production

rules for the same nonterminal can be written as one rule with distinct right-hand sides

delimited by the alternation symbol |. CFGs are usually defined solely by a sequence of

production rules, where nonterminals are inferred from the left-hand side of every rule, the

terminals are inferred from all symbols on the right-hand side except the nonterminals, and

the starting nonterminal is the left-hand side of the first defined rule. Production in a CFG

is the process of iteratively applying applicable production rules to a string, initially set to

S, until only terminals are left. An example of a production is shown in Figure 3-5b.

3.4 Combinatory logic

Combinatory logic is based upon a number of primitive combinators that permit variable-

free flow of information [Schönfinkel, 1924; Curry, 1958]. Combinatory logic is Turing-

complete: every computable function can be expressed in it [Church, 1936; Turing, 1937].

In combinatory logic, every expression — or “combinator” — is either a primitive combi-

nator or an application of two combinators. Combinators are higher-order functions which

take one combinator and give another combinator. Reduction is the process by which prim-

itive combinators are replaced using reduction rules which, in effect, define each primitive

combinator. A combinator for which no reduction rules are applicable is said to be in nor-

mal form. A key distinction between context-free grammars and combinatory logic is that

while every sentence in a context-free language can be parsed, not every combinator can be

“computed” — i.e. reduced to normal form7. This is a consequence of combinatory logic

being Turing-complete. Section 3.1 Overview explains why Turing-completeness is useful

for representations of concepts. A key feature of combinatory logic is that, because it is

variable-free, components of a combinator are themselves valid combinators. A notable

use-case of combinatory logic is shown in Figure 3-6.

Combinatory logic provides variable routing as an alternative to variable binding: inputs

are routed to their destination in the combinatory structure. Because combinators can

influence how subsequent arguments are used, they are typically thought of as “curried”

7 For example, (S I I (S I I)) in the BCIKS system of Figure 3-7.
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if ≜ I

true ≜ K

false ≜ C K

and ≜ S C I

or ≜ S I I

not ≜ C

(if true A B) = A

(if false A B) = B

(and (not false)

(not (not true))) = true

Figure 3-6: An example of computing with combinatory logic: Boolean
logic. The symbol definitions are not a feature of combinatory logic: their
purpose here is to illustrate a way combinators may be used to provide mean-
ingful computation. A and B are illustrative placeholders for combinators.
This is built atop the BCIKS system of Figure 3-7.

functions: functions which take many arguments but are expressed such that subsequent

arguments are applied in a nested fashion, with intermediate applications yielding partially-

applied functions.

Syntactically, single characters are used to denote primitive combinators, and paren-

theses are used to denote application: f applied to x is (f x). Combinators are defined

inductively:

1. Every primitive combinator is a combinator.

2. If A and B are combinators, then (A B) is a combinator.

Parentheses may be omitted in a left-associative manner: ((f x) y) is equivalently written

as f x y. A system of combinatory logic, described by the transformations made by each

primitive combinator when given a sufficient number of arguments, is depicted in Figure 3-7.

B f g x→ f (g x) (composition)
C f x y → f y x (swap)

I x→ x (identity)
K x y → x (drop)

S f g x→ f x (g x) (duplicate)

Figure 3-7: The Schönfinkel BCIKS system of combinatory logic. These
rules describe how to perform reduction of a combinator.
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In practice, combinatory logic is often interpreted in an environment which ascribes

non-combinatory meaning to certain primitive combinators. For example (S ∗ I 2) reduces

to (∗ 2 2), which an interpreter may further evaluate to 4. This is theoretically unneces-

sary, as there exists an encoding for numbers in combinatory logic with relevant arithmetic

operations such that reduction performs this evaluation.

Combinators may further be represented as binary trees where leaf is a primitive combi-

nator and non-leaf nodes refer to function application of the node’s left child with its right

child. See Figure 3-8 for an example of a combinator as a binary tree. An important feature

of this binary tree representation of combinators is that any subtree of a valid combinator

is itself a valid combinator.

C

B

+ S

∗ I

1

(a)

C

B +

S ∗

I

1

(b)

C (B+ (S ∗ I)) 1 x → B+ (S ∗ I) x 1
→ + (S ∗ I x) 1
→ + (∗ x (I x)) 1
→ + (∗ x x) 1

(c)

Figure 3-8: Binary tree representations for f(x) = x2 + 1, corresponding
to the combinatory logic expression (C (B + (S ∗ I)) 1): (a) with primitive
combinators as node labels and arrows to visualize the path of an input; (b)
primitive combinators as terminals; (c) reduction of the combinator when
supplied argument x.

3.4.1 Polymorphic typed combinatory logic

Combinatory logic may be extended with types to prevent nonsense combinators such as

(3 ∗ K). Types are sets of values that may inhabit a term. For example, the type of 3 is Int,

or “integer”8, and only integers can inhabit the placeholders in the combinator (∗ _ _). We

define the arrow type, which describes functions, as (α→ β) for functions that take values of

type α and return values of type β. The type of (∗ 3), then, is (Int→ Int). Parentheses

8 The type of 3 and (∗) can be different depending on the framing: it may be a positive number, or a
natural number, or a rational number, or a real number, etc. Integer is chosen here by common computer
programming convention. This ambiguity is beyond the scope of this work, but an understanding of subtyping
should suffice as clarification.
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for arrow types may be omitted in a right-associative manner: (Int → (Int → Int)),

the type for a function that takes two Ints and returns an Int (e.g. multiplication (∗)),

is equivalently written as Int → Int → Int. Simple types [Church, 1940] are defined

inductively from a set of base types such as Int (Integer) or Bool (Boolean) as follows:

1. Every base type is a simple type.

2. If α and β are simple types, then α→ β is a simple type.

When adopting a type system, every valid term (or in this case, combinator) must have

a type, so we will often adopt the notation x : τ for term x with type τ denoted by a Greek

letter. Equipped with the type of every primitive combinator, we inductively define the

types for all (valid) combinators:

1. The type of a primitive combinator is given.

2. If (A : α→ β) and (B : α) are combinators, then the application (A B) has type β.

From this definition the utility of types is apparent: combinators can only be combined if

their types match appropriately.

Types for combinatory logic get more complicated when we must deal with the primitive

combinators B, C, I, K, and S. A first effort may be to copy these combinators for every

simple type, so Iα is operationally equivalent to I but it has the type α and is defined for

every α. This would yield infinitely many copies of each combinator. We instead adopt

parametric polymorphism: a combinator may have a simple type as discussed above, or it

may have a type schema9 which permits universally quantified type variables. We further

extend simple types to monotypes, which are like simple types but may include type variables

that are not quantified10. For example, the type schema of K is ∀α∀β. α→ β → α. Once K

is used, types are filled in appropriately depending on how it is used11: the type (monotype)
9 Combinators may be regarded as having types or as having type schemas depending on what is relevant.

There is an important distinction between the type schema ∀α. α → α and the type α → α: the former is
universally quantified to work with any type (i.e. the identity function) and the latter is an instance which,
as effectively an existential quantification over type variables, works for some type α (e.g. unary negation
over Booleans Bool → Bool). In practice, primitive combinators have associated type schemas and every
constructed combinator has a type.

10 It is important to recognize that valid combinators may further constrained with the inclusion of type
variables for monotypes. For example, in the monotype α → α the αs are identical. These type variables
are kept consistent by a structure called the type context.

11 This is typically done by a process called type inference, which we do not discuss here. See Pierce [2002]
for a more thorough introduction to types and type inference for programming languages.
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of (K 1) is β → Int and the K used in that term has type Int→ β → Int. As expected,

the type of (K 3 S) is Int. Type schemas for each primitive combinator discussed in

this section are shown in Figure 3-9. The naming of type variables must be unique for

new polymorphic combinators that get introduced. This necessitates a type context to keep

track of which type variable names have been introduced, to maintain assignments to type

variables that have been inferred, and to provide a process of instantiation by which new

primitive combinator may be used with new type variables where applicable.

B : ∀α∀β∀γ. (β → γ)→ (α→ β)→ α→ γ

C : ∀α∀β. (α→ α→ β)→ α→ α→ β

I : ∀α. α→ α

K : ∀α∀β. α→ β → α

S : ∀α∀β∀γ. (α→ β → γ)→ (α→ β)→ α→ γ

Figure 3-9: Type schemas for the Schönfinkel BCIKS combinators.

This type system, called the Hindley-Milner type system [Hindley, 1969; Milner, 1978;

Damas and Milner, 1982], is implemented in the many programming language, such as ML

and Haskell. We provide our own implementation at https://github.com/lucasem/

polytype-rs12.

3.5 Lambda-calculus

Lambda-calculus (henceforth written λ-calculus) is a formalism of computation which is

based on variable binding instead of variable routing, unlike combinatory logic (see Sec-

tion 3.4 Combinatory logic) [Church, 1941]. Fundamental to λ-calculus is the procedural

abstraction, by which procedures may generalize to take an input. For example, 2 + 3

could be generalized to f(x) = 2 + x, both of which are clearly represented in λ-calculus13.

λ-calculus has become foundational in both computer science and programming curricula

for its intuitive and expressive power. A family of programming languages, LISP, is based

upon it, which permits intuitive computational patterns such as the one shown in Fig-

ure 3-10 [Abelson et al., 1996]. For terminology, where combinatory logic had combinators,

12 Documentation is located at https://docs.rs/polytype.
13 Represented as ((+ 2) 3) and (λx((+ 2) x)), respectively.
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λ-calculus has (valid) expressions.

(define (gcd a b)
(if (= b 0)

a
(gcd b (remainder a b))))

Figure 3-10: A procedure in Scheme, a dialect of LISP, based on
the abstractions provided by λ-calculus. Here we’ve defined a func-
tion for the greatest common denominator (gcd) using (define (gcd
a b) (...)). This corresponds to the expression in λ-calculus of
(λG<rest>)(λa(λb(...))) where <rest> is an expression that may use G
as a procedure for gcd.

λ-calculus has more sophisticated syntax than combinatory logic. There are three im-

proper symbols λ, (, and ), as well as an infinite number of variables a, b, . . . , ā, b̄, . . . , ¯̄a, . . ..

Parentheses are used to denote function application as with combinatory logic, and are ad-

ditionally used directly around a λ-abstraction, which is an expression of the form (λxM).

Independent of the syntax of λ-calculus itself, we use bold capital letters such as M, to

refer to a particular expression, and bold lowercase letters such as x to refer to a particular

variable. Each expression associates a mutually-exclusive attribute free or bound to any

variables contained within it. Expressions of λ-calculus are determined according to the

following rules:

1. A variable x is a valid expression that has x as a free variable.

2. If F and A are valid expressions, then the application (F A) is a valid expression.

Variables that are free in either F or A are also free in (F A).

3. If M is a valid expression and has free variable x, then (λxM) is a valid expression

where x is bound.

We use M[x := N] to denote the resulting expression of substituting x with N through-

out M. The expression created by substitution M[x := N] is valid if M and N are both

valid, x is not bound in M, and the free variables of N are distinct from the bound variables

of M. Conversion is the process by which valid expressions may be transformed into other

valid expressions:

1. Replace any part M of an expression with M[x := y] where x is not free in M and y

does not occur in M. This is operation is called α-conversion, and its intension is to

avoid variable naming collisions that prevent other operations from being performed.
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2. Replace any part ((λxM) N) of an expression with M[x := N] where the free variables

of N are distinct from the bound variables of M. This operation is called β-reduction.

3. Replace any part M[x := N] of an expression with ((λxM) N) where ((λxM) N) is

a valid expression, x is not bound in M, and the free variables of N are distinct from

the bound variables of M. This operation is sometimes called inverse-inlining.

A valid expression is in normal form if it contains no part of the form ((λxM) N). If

such a normal form exists, then it is unique up to a number of α-conversions. Reduction of

an expression refers to the process of applying α-conversions and β-reductions to yield an

expression in normal form. Not every expression can be reduced14.

In practice, λ-calculus is often modified to permit non-variable constants which are in-

terpreted during reduction. For example ((λx(∗ x 2)) 2) reduces to (∗ 2 2), which an

interpreter may further evaluate to 4. As with combinatory logic, this is theoretically

unnecessary because there exists an encoding for numbers in λ-calculus with relevant arith-

metic operations such that β-reduction performs this evaluation, as shown in Figure 3-11.

Defining data and operators in λ-calculus is called Church encoding.

1→ (λa(λb(a b)))

2→ (λa(λb(a (a b))))

3→ (λa(λb(a (a (a b)))))

...
M+N→ (λa(λb((M a) ((N a) b))))

M×N→ (λa(M (N a)))

MN → (N M)

Figure 3-11: Arithmetic in pure λ-calculus. Arrows represent encoding.
Bold lowercase letters starting from a denote unused variable names.

Dealing with conflicting variable names by α-conversion is hardly convenient, so practical

implementations of λ-calculus abandon the notion of α-conversion in favor of the de Bruijn

index notation [De Bruijn, 1972]. In this notation, variables are described not by names,

but by numbers indicating the location of the abstraction (λ) where a variable is bound: 1
14 For example, ((λx(x x)) (λx(x x))).
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refers to the nearest surrounding abstraction, 2 refers to the nearest surrounding abstraction

around the abstraction where 1 is bound, etc. For example, (λa(λb(a b))) is written in de

Bruijn index notation as (λ(λ(2 1))), or simply λ λ 2 1 with left-associative parenthesis

omission. This binding pattern is illustrated by Figure 3-12. We will refrain from using this

notation in this exposition of λ-calculus, but we adopt it in our practical implementations.

λ (λ 1 (λ 1)) (λ 2 1)

Figure 3-12: de Bruijn index notation. Colors and arrows indicate distinct
variables and the abstractions which introduce them.

3.5.1 Simply typed lambda-calculus

Much like combinatory logic, λ-calculus may be extended with types to prevent nonsense

operations such as ((3 ∗) (λa(λba))). However, we don’t need to adopt a sophisticated type

system like Hindley-Milner for λ-calculus as we did for combinatory logic: simple types

suffice [Church, 1940; Curry, 1958] as there were described in Section 3.4.1 Polymorphic

typed combinatory logic. Equipped with the type of every constant, we inductively define

(valid) typed expressions:

1. Every constant is an expression with its given type.

2. A variable (x : α) is an expression with type α that has x as a free variable15.

3. If (F : α → β) and (A : α) are expressions, then the application (F A) has type β.

Variables that are free in either F or A are also free in (F A).

4. If (M : β) is an expression and has free variable (x : α), then (λxM) is a valid

expression with type α→ β where x is bound.

3.5.2 Polymorphic typed lambda-calculus

A polymorphic type system over λ-calculus has been studied as System F [Girard, 1972;

Reynolds, 1974]. In practice, the Hindler-Milner (HM) polymorphic type system is used.

We did not cover this system in full detail in Section 3.4.1 Polymorphic typed combinatory
15 Variable must consistently be used with the same type.
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logic, but we take this opportunity to fill in some relevant details. HM allows programming

languages to be equipped with particular type constructors so that “lists with elements of

type T” can be represented with the type List T. With this faculty baked in, we can write

list operations within the type system as shown in Figure 3-13. These functions implicitly

take in types as arguments, which serve to replace the universal quantification with a

substitution for the bound type variable. Type inference is a technique which performs this

implicit type substitution [Pierce, 2002].

nil : ∀X. List X

cons : ∀X. X → List X → List X

isnil : ∀X. List X → Bool

head : ∀X. List X → X

tail : ∀X. List X → List X

filter : ∀X. (X → Bool)→ List X → List X

map : ∀X. ∀Y. (X → Y )→ List X → List Y

fold : ∀X. ∀Y. (Y → X → Y )→ Y → List X → Y

(a)

map = (λf(λℓ(((fold (λy(λx((cons (f x)) y)))) nil) ℓ)))

= λfℓ.fold (λyx.cons (f x) y) nil ℓ

(b)

(define map (λ (f l) (fold (λ (y x) (cons (f x) y)) nil l)))

(c)

Figure 3-13: List operations in polymorphic λ-calculus. (a) Types for
various list operations; (b) definition of the map primitive in λ-calculus, in
standard syntax and with omitted parentheses, given fold, cons, and nil;
(c) definition of map in the Lisp programming language.

We provide our own implementation of polymorphic λ-calculus at https://github.

com/lucasem/program-induction16.

16 Documentation for the λ-calculus representation is located at https://docs.rs/
programinduction/~0/programinduction/lambda/index.html.
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3.6 Term rewriting

Term rewriting is yet another formalism for computation [Bezem et al., 2003]. Like λ-

calculus, it relies on variable binding rather than routing. Fundamental to term rewriting

is a form of pattern matching. Programming languages like Haskell may often be viewed in

the frame of term rewriting, as in Figure 3-14. In this section, unless otherwise noted, we

are working with first-order term rewriting systems17.

not True = False
not False = True
even 0 = True
even n = odd (n-1)
odd n = not (even n)

(a)

odd 3 → not (even 3)
→ not (odd 2)
→ not (not (even 2))
→ not (not (odd 1))
→ not (not (not (even 1)))
→ not (not (not (odd 0)))
→ not (not (not (not (even 0))))
→ not (not (not (not True)))
→ not (not (not False))
→ not (not True)
→ not False
→ True

(b)

Figure 3-14: (a) Functions in Haskell for determining whether a natural
number is even or odd. These could be viewed as procedure calls, however
they may instead be viewed as rewrites to a term. It is trivial to convert
this Haskell code into a term rewriting system. (The fourth rule, which
decrements a natural number in the right-hand side, may instead take the
successor of a natural number on the left-hand side so the rewrite system
does not have to implement subtraction). (b) The rewriting of a term in this
system.

A term rewriting system (TRS) is a pair (Σ, R) where Σ is the signature that specifies

objects in the system — terms — and R determines a set of binary relations — rewrite

rules — over those terms. We begin with an example in Figure 3-15a and describe the

TRS formalism using the example as reference. The signature Σ defines symbols which

each have a nonnegative arity denoted by superscript: A(2) has arity two (binary), S(1)

has arity one (unary), and Z(0) has arity zero (nullary). Arity is in effect the number of

arguments a function, defined by a symbol, takes: a symbol with arity n corresponds to an

n-ary function. We use lowercase letters x, y, . . . to denote variables: there is an implicit

countably-infinite set Var disjoint from Σ for which the notion of arity does not apply. With

Var and Σ, we can inductively define the set of (valid) terms over Σ:

17 Higher-order rewrite systems are discussed in Section 3.6.2 Higher-order rewriting
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Σ := A(2),M (2), S(1), Z(0)

R := {ρ1, ρ2, ρ3, ρ4}

ρ1 : A(x,Z) → x

ρ2 : A(x, S(y)) → S(A(x, y))

ρ3 : M(x,Z) → Z

ρ4 : M(x, S(y))→ A(M(x, y), x)

(a)

Σ := ◦(2), B(0), C(0), I(0),K(0), S(0)

R := {ρ1, ρ2, ρ3, ρ4, ρ5}

ρ1 : ◦ (◦(◦(B, f), g), x)→ ◦(f, ◦(g, x))
ρ2 : ◦ (◦(◦(C, f), x), y) → ◦(◦(f, y), x)
ρ3 : ◦ (I, x) → x

ρ4 : ◦ (◦(K,x), y) → x

ρ5 : ◦ (◦(◦(S, f), g), x) → ◦(◦(f, x), ◦(g, x))

(b)

Figure 3-15: Term rewriting system for (a) arithmetic on natural num-
bers and (b) combinatory logic where ◦ is the symbol for application of two
combinators.

1. Every x ∈ Var is a term.

2. If F (n) ∈ Σ and t1, . . . , tn are terms, then F (t1, . . . , tn) is a term. Nullary symbols are

written as F instead of F ().

We use ≡ to express syntactical identity between two terms. It is useful to distinguish terms

that have variables from those that have none. Let Var(t) be the variables that occur in

term t. A term t is a ground term if Var(t) = 0, it is linear if Var(t) > 0 and each variable in

t occurs exactly once, and it is non-linear otherwise. The term in Figure 3-16a is a ground

term, while the term in Figure 3-16b is a linear term.

Terms may be represented as labelled trees, or term trees. Each node in a term tree

corresponds to either a symbol Fn ∈ Σ, where the node is labelled by F and it must have

exactly n child nodes, or a variable x ∈ Var, where the node is labelled by x and it must

have no children. See Figure 3-16 for examples of term trees.

Similar to terms, there are contexts. A context is an incomplete term which may contain

empty places, or holes. Contexts may be thought of as terms in an extended signature

Σ ∪ {□(0)}. If C is a context with n holes and t1, . . . , tn are terms, then C[t1, . . . , tn] is the

replacement of holes of C from left to right by the corresponding terms t1, . . . , tn. Every

context which has a replacement that yields the term t is called a prefix of t. A one-hole

context C, specially denoted C[ ], is an apparently useful construct. If a term t can be

written as C[s], then the term s is a subterm of t. With contexts, a new construct is

motivated: positions. A position p in a term t uniquely determines a one-holed prefix t[ ]p
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A

S

S

Z

A

S

Z

S

Z
(a) A(S(S(Z)), A(S(Z), S(Z)))

M

S

Z

x

(b) M(S(Z), x)

⟨⟩

⟨1⟩

⟨1, 1⟩

⟨1, 1, 1⟩

⟨2⟩

⟨2, 1⟩

⟨2, 1, 1⟩

⟨2, 2⟩

⟨2, 2, 1⟩
(c) positions

Figure 3-16: (a,b) Term trees under the arithmetic TRS of Figure 3-15a.
(c) A tree diagram showing positions associated with a term tree.

as well as a subterm s that occurs at position p, written t|p. Positions are represented by

finite arrays which encode movements in a term tree starting from the root and moving

left-to-right starting at 1 (see Figure 3-16c for a visual depiction).

Substitution is the replacement of variables with terms. It is a map σ from terms to

terms satisfying

σ(F (t1, . . . , tn)) ≡ F (σ(t1), . . . , σ(tn))

for all symbols F (n) ∈ Σ. This is operationally equivalent to a recursively applied map-

ping of variables to terms, so we adopt the notation {x1 7→ s1, . . . xm 7→ sm}, where

x1, . . . , xm ∈ Var and s1, . . . , sm are terms, for defining a substitution. If σ(s) ≡ σ(t),

then the substitution σ is a unifier for t and s.

Until now, we have discussed terms in term rewriting systems. We now discuss rewriting.

A rewrite rule ρ for a signature Σ is a pair of terms ρ : l→ r which satisfies the restrictions

l ̸∈ Var and Var(r) ⊆ Var(l). A rewrite step according to rewrite rule ρ : l→ r is a relation

produced by applying a substitution σ to both terms of the rule within an arbitrary context:

C[σ(l)]→ρ C[σ(r)]

For a set of rewrite rules R we define the one-step reduction→R as the relation comprised of

all rules
∪
{→ρ |ρ ∈ R}. A reduction is a sequence of one-step reductions t1 →R · · · →R tn

for which we write t1 ↠ tn and call tn a reduct of t1. A reduction, described by each rewrite

step, is shown in Figure 3-17.
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A(S(Z),M(S(S(Z)), S(Z)))→ρ4 A(S(Z), A(M(S(S(Z)), Z), S(S(Z))))

→ρ2 A(S(Z), S(A(M(S(S(Z)), Z), S(Z))))

→ρ2 A(S(Z), S(S(A(M(S(S(Z)), Z), Z))))

→ρ1 A(S(Z), S(S(M(S(S(Z)), Z))))

→ρ3 A(S(Z), S(S(Z)))

→ρ2 S(A(S(Z), S(Z))))

→ρ2 S(S(A(S(Z), Z)))

→ρ1 S(S(S(Z)))

Figure 3-17: A reduction of 1 + 2 × 1 in the arithmetic TRS of Figure 3-
15a. This is not the only reduction from A(S(Z),M(S(S(Z)), S(Z))) to
S(S(S(Z))).

3.6.1 Polymorphic typed term rewriting

An extension to term rewriting systems is the association of a type for every term. The two

TRSs of Figure 3-15 suffice without types, but a sufficiently complex TRS such as the one

shown in Figure 3-18 requires types to prevent nonsense like S(Cons(S(Z), Cons(Z,Nil)))18.

Without types, we are forced to either accept such a term and be unable to reduce it, or to

introduce rules which can reduce it, such as ρ′ : S(Cons(x, y)) → Cons(S(x), S(y)). As

with previously discussed representations, we adopt the Hindley-Milner polymorphic type

system. Arity is no longer needed to describe a symbol because a type such as Int→ Int→

Int inherently determines the number of arguments a symbol requires. Specifically, each

symbol is associated a type schema, as described in Section 3.4.1 Polymorphic typed combi-

natory logic, and every use of a symbol in a term is instantiated under a type context to re-

move quantifiers19 thus yielding a type. We provide an implementation of polymorphic first-

order term rewriting at https://github.com/lucasem/program-induction20.

18 Read “the successor of the list [1,0]”. What does it mean to get the successor of a list?
19 Because every term has a type, not a type schema. We regret the overloaded usage of the word “type”.
20 Documentation for the first-order term rewriting representation is located at https://docs.rs/

programinduction/~0/programinduction/trs/index.html.
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Σ := Head(1), Tail(1), Cons(2), Nil(0), S(1), Z(0)

R := {ρ1, ρ2}

ρ1 : Head(Cons(x, y))→ x

ρ2 : Tail(Cons(x, y)) → y

(a)

Head : ∀X. List X → X

Tail : ∀X. List X → List X

Cons : ∀X. X → List X → List X

Nil : ∀X. List X

S : Nat→ Nat

Z : Nat

(b)

Figure 3-18: (a) A term rewriting systems for lists and natural numbers
and (b) the type of each symbol in its signature.

3.6.2 Higher-order rewriting

A drawback to first-order term rewriting, as discussed above, is that it does not allow

symbol binding: a higher order function such as map cannot be expressed as a rewrite rule

directly. A higher-order rewrite system gives us this expressive power — here we describe

a polymorphic typed variant of the combinatory reduction system which we name PCRS21

[Klop, 1980; Klop et al., 1993]. We use an example, in Figure 3-19, to motivate and guide

our exposition of PCRSs.

We take Σ to be a set of symbols which each have a type f : τ . Let args(τ) be the list

of arguments types for type τ22 and let yield(τ) be the return type for type τ23. Let Var be

a countably-infinite set of variables disjoint from Σ where each variable has the universal

schema (x : ∀α.α) ∈ Var. Let MetaVar be a countably-infinite set of meta-variables disjoint

from Σ ∪ Var where each meta-variable has the universal schema (F : ∀α.α) ∈ MetaVar.

Variables and meta-variables, when used in the same object, have the same instantiated

type24. Metaterms for a signature Σ are defined inductively as follows:

1. Every (x : τ) ∈ Var is a metaterm with type τ .
21 Polymorphic combinatory reduction system
22 Assuming sequence concatenation by +:

args(τ) ≜
{
[α] + args(β) if τ = α→ β

[] otherwise

23

yield(τ) ≜
{

yield(β) if τ = α→ β

τ otherwise

24 Recall that instantiation is the removal of quantifiers corresponding to a particular instance. Type
inference uses constraints of a term’s usage to determine its concrete type
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Σ := { (nil : ∀X. List X),

(cons : ∀X. X → List X → List X),

(map : ∀X. ∀Y. (X → Y )→ List X → List Y ),

(+ : Nat→ Nat→ Nat),

(∗ : Nat→ Nat→ Nat),

(s : Nat→ Nat),

(z : Nat) }
R := {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6}

ρ1 : +(X, z) → X

ρ2 : +(X, s(Y )) → s(+(X,Y ))

ρ3 : ∗(X, z) → z

ρ4 : ∗(X, s(Y )) → +(∗(X,Y ), X)

ρ5 : map(λx.F (x), nil) → nil

ρ6 : map(λx.F (x), cons(H,T ))→ cons(F (H), map(λx.F (x), T ))

Figure 3-19: A polymorphic combinatory reduction system to demonstrate
the map list operation. For legibility, symbols are written in blue, meta-
variables in orange, and variables in red.

2. If (f : τ) ∈ Σ and t1, . . . , tn are metaterms with types corresponding to args(τ), then

f(t1, . . . , tn) is a metaterm with type yield(τ). Symbols that have non-arrow type are

written as F instead of F().

3. If (x : α) ∈ Var and s : τ is a metaterm, then λx.s is a metaterm with type α→ τ .

4. If (F : τ) ∈ MetaVar and t1, . . . , tn are metaterms with types corresponding to args(τ),

then F (t1, . . . , tn) is a metaterm with type yield(τ).

A variable (x : τ) ∈ Var is said to be bound in a metaterm if every occurrence of it is within

a scope of the form λx.t. We define a term as a metaterm with no meta-variables. For

example, following the system of Figure 3-19, map(λx.s(x),cons(z,nil)) is a term. Note

that meta-variables here correspond to variables in first-order TRSs, and the distinction in

TRSs between ground terms and non-ground terms is taken here as the distinction between

terms and metaterms. We also redefine contexts for PCRSs as they were defined earlier in

Section 3.6 Term rewriting but restricted to enforce types always match. For example, if s is

the term consisting only of the free variable x, and C[ ] is a one-hole context f(λx.□), then

the replacement C[s] results in the capturing of s’s free variable yielding the term f(λx.x).
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A rewrite rule for a PCRS is a pair of metaterms l, r satisfying the following restrictions:

1. Every meta-variable in l has distinct bound variables as arguments. This was not ap-

plicable for first-order TRSs because a variable always had arity 0, and that restriction

is relaxed here for meta-variables.

2. Every meta-variable in r also occurs in l.

3. Every variable in l and r is bound.

Recall that for first-order TRSs, variables (that always have arity 0) in rules would be

substituted with ground terms (with root symbol of any arity) during reduction. For higher-

order rewrite systems, and here in particular PCRSs, meta-variables are “meta-substituted”

in a manner that allows any term to take its place (provided the types match and no free

variables are introduced). We will formalize this shortly, but first consider the example

metaterm λu.F (u) and term λx.+(x, x): if a meta-substitution σ permitted replacing F with

λx.+(x, x), then the substitution applied to the metaterm would yield λu.(λx.+(x, x))(u)

which simplifies to λu. + (u, u)25. We now formalize meta-substitution and simplification

to permit this kind of operation.

A meta-substitution is a mapping σ from metaterms to terms, effectively defined by

replacements of meta-variables with terms and an accompanying simplification method,

which satisfies the following:

σ(x) ≡ x for x ∈ Var

σ(F (t1, . . . , tn)) ≡ σ(F )(σ(t1), . . . , σ(tn))
∗ for F ∈ MetaVar

σ(λx.s) ≡ λx.σ(s)

σ(f(t1, . . . , tn)) ≡ f(σ(t1), . . . , σ(tn)) for f ∈ Σ

where simplification, indicated in the marked substitution clause (∗), is the replacement of

terms of the form (λx.t)(s) with t[x 7→ s] — where bound occurrences of the variable x in

the term t are replaced with s.

A rewrite step using a rewrite rule ρ : l→ r relates two terms t and s as t→ρ s if there

exists a one-hole context C and meta-substitution σ such that s ≡ C[σ(l)] and t ≡ C[σ(r)].
25 This example is motivated by the PCRS of Figure 3-19: it is not obvious that the term

map(λx.+(x, x),cons(s(z),nil)) can be rewritten using the rule ρ6. See Figure 3-20 for the reduction
of a term like this.
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A reduction is a sequence of rewrite steps using a set of rules R. A reduction for the PCRS

of Figure 3-19 is shown in Figure 3-20.

map(λx.+(x, x), cons(s(z), cons(s(s(z)), nil)))

with σ := {F 7→ λx.+(x, x), H 7→ s(z), T 7→ cons(s(s(z)), nil)}
→ρ6 cons(+(s(z), s(z)), map(λx.+(x, x), cons(s(s(z)), nil)))

with σ := {X 7→ s(z), Y 7→ s(z)}
→ρ2 cons(s(+(s(z), z)), map(λx.+(x, x), cons(s(s(z)), nil)))

with σ := {X 7→ s(s(z))}
→ρ1 cons(s(s(z)), map(λx.+(x, x), cons(s(s(z)), nil)))

with σ := {F 7→ λx.+(x, x), H 7→ s(s(z)), T 7→ nil}
→ρ6 cons(s(s(z)), cons(+(s(s(z)), s(s(z))), map(λx.+(x, x), nil))

with σ := {X 7→ s(s(z)), Y 7→ s(s(z))}
→ρ2 cons(s(s(z)), cons(s(+(s(s(z)), s(z))), map(λx.+(x, x), nil))

with σ := {X 7→ s(s(s(z))), Y 7→ s(z)}
→ρ2 cons(s(s(z)), cons(s(s(+(s(s(z)), z))), map(λx.+(x, x), nil))

with σ := {X 7→ s(s(s(s(z))))}
→ρ1 cons(s(s(z)), cons(s(s(s(s(z)))), map(λx.+(x, x), nil))

with σ := {F 7→ λx.+(x, x)}
→ρ5 cons(s(s(z)), cons(s(s(s(s(z)))), nil)

Figure 3-20: A reduction of an applied map operation for doubling onto a
list of numbers [ 1, 2 ] in the PCRS of Figure 3-19.
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3.7 Pure type systems

In the three preceding sections, we aided general purpose computing machinery with types,

which are effectively sets of values. We now focus our attention to a class of type systems

that enable the expression of rich concepts in a declarative and relational manner, rather

than through direct computational construction — we look to representation at the level of

types. Types as they are exploited in programming languages provide the following:

• conceptual role semantics, which we discuss in detail in Chapter 5 Towards Formalized

Conceptual Role, because types can have relations to other types where those relations

are themselves types (hence meaning is derived from types and their relations);

• no nonsense values because illegal states are made unrepresentable by associating

terms with sufficiently descriptive types; and

• implementation is irrelevant because illegal behavior cannot compile, where behavior

is defined declaratively using a type.

Intuitionistic logic provides a framing of computation where a value (or program) is a

constructive proof of some type26 [Kolmogorov, 1932; Pierce, 2002; Granström, 2011]. With

computation as consequence of types, we are justified in looking at types alone and may

disregard “concrete” values or programs. We particularly look at the framework of pure type

systems which generalizes a large class of typed λ-calculi. See Figure 3-21 for examples of

what is representable within a pure type system — without writing any concrete procedure.

To help make sense of pure type systems, we start with some type systems over which

they generalize. The λ-cube diagrammed in Figure 3-22 presents eight type systems upon

a simply-typed λ-calculus (c.f. Section 3.5.1 Simply typed lambda-calculus). These type

systems extend λ-calculus with features of polymorphism, type operators, and dependent

types. We refrain from digging into the formal theory of these systems, instead giving

a high-level exposition before discussing pure type systems: we explain what those three

italicized features mean after an explanation of what they build upon:
26 We mean constructive proof in the sense of mathematical logic: let a type represent some theorem,

then a value (or program) of that type provides an existence proof for the theorem. This correspondence is
known as the Curry-Howard isomorphism.
The law of the excluded middle — that every proposition satisfies ¬P ∨P — is not assumed in intuitionistic
logic because a proposition refers to computation, which is famously undecidable [Chlipala, 2011; Turing,
1937].
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box shed

container traversable

sortin out

items: distinct

items: orderable + finite

(a)

sort : Ord T ⇒ {i : List T} → {v : List T | elems(i) = elems(v)

∧ nondecreasing(v)}

(b)

Figure 3-21: (a) A schematic of conceptual relations that are representable
in a declarative manner. It is straightforward to convert this schematic as
illustrated here into types of a pure type system. (b) Sort defined with a
dependent type: given a type T which is orderable (signified by the constraint
Ord T ), the procedure’s input i is a value of type List T , and the output
type depends on the input value — it is the set of values v of type List
T that satisfy the conditions that the elements of v are equivalent to the
elements of i and that v is a non-decreasing list.

• value → value or abstraction in λ-calculus terms (c.f. Section 3.5 Lambda-calculus).

This permits a representation of functions that take values and return values. Vir-

tually every modern programming language features this. It provides procedural ab-

straction, which serves as a foundation of computation [Abelson et al., 1996].

• type → value or polymorphism permits values that are determined by some type.

For example, the identity function (λxx) in a polymorphic system may have type

∀α.α → α which effectively acts as the function which takes a type as its argument,

(λτ(λ(x : τ)x)) (where we adopt x : τ to mean a value x of type τ).

• type → type or type operators permit types to be constructed using other types.

For example, Either is a type operator that, when given two types α and β, yields

a new type called “Either α β” for which values can be either a value of type α

or a value of type β27. With type operators comes the kind system, or essentially a

type system for types. Either has kind Type→ Type→ Type28, taking two types
27 This statement is formally written as Either α β ≜ α ∪ β.
28 Historically, the Type kind is written with a star *.
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Figure 3-22: The Barendregt λ-cube with labeled axes on the right [Baren-
dregt, 1991]. Each vertex is an enhancement from λ→ (front-bottom-left),
the simply-typed λ-calculus we described in Section 3.5.1 Simply typed
lambda-calculus. System F (front-top-left) is polymorphic λ-calculus, a
variant of which we presented in Section 3.5.2 Polymorphic typed lambda-
calculus. The calculus of constructions (CC; Coquand and Huet [1986]) has
all three features indicated by the three axes of the cube: polymorphism,
type operators, and dependent types.

and returning a new type. Another example of a type operator is List, with kind

Type→ Type, where “List τ” is a type for lists where all elements have type τ .

Type operators are often extended in practice to include constraints. Constraints work

much like propositions in sequent calculus, where logical statements are conditioned

on other logical statements [Gentzen, 1935; Kleene, 1952]. This is done in a type sys-

tem by introduction of the Constraint kind and permitting types to not only be ex-

pressed with kind Type, but also a Type accompanied with a sequence of constraints.

A constraint-returning type operator is called a type family. For example, Ord is a

type family with kind Type → Constraint, where Ord τ expresses the statement

that τ is orderable — i.e. provides a method with type τ → τ → {true,false} that

is consistent with the mathematical notion of ordering (a binary relation that is tran-

sitive, reflexive, anti-symmetric, well-founded, and a connex). This is demonstrated

in the example of sort in Figure 3-21b where A⇒ B means A is a type family and B

is defined when A is satisfied. Such a conditional type, A⇒ B, is akin to a sequent in

sequent calculus.

• value → type or dependent types permit types that depend on values. This typically

takes form of first-order logic at the type-level where a value may be bound and

quantified. There are two varieties of dependent types corresponding to universal and

existential quantification over values. A pi type Π(a:A)B(a) is a dependent type that

universally quantifies over values a : A and provides the type according to B, an
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operator which takes a value of type A and returns a type. An example of a pi type is

sort in Figure 3-21b, where the procedure’s input is universally quantified and the

output is defined in terms of the input. The other variety is the sigma type Σ(a:A)B(a)

which existentially quantifies over values a : A and provides the type according to B

in the form of a set of tuples {(a,B(a)) | a ∈ A}.

These features are all present in many proof systems and some programming languages.

A language with such highly-expressive types opens the realm of tactics, which are methods

for determining inhabitants of a type: they effectively reason from types into concrete code.

This is one reason why proof systems are an apparent application of such a rich type system:

you can provide a proof constructively, in terms of types, and check whether the types have

inhabitants.

Every system in the λ-cube is naturally expressed in a pure type system: there is no

need to introduce those features as special ad-hoc extensions to the type system. Pure

type systems simplify these features by providing a generalized framework for systems with

terms and types [Barendregt, 1991, 1992; Geuvers, 1993].

Pure type systems derive judgements of the form

Γ ⊢M : A

where M and A are pseudoterms, which we will define shortly, and Γ is a finite sequence of

declarations x : B where x is a variable and B is a pseudoterm. These judgements express

that M is of type A given the variables declared in Γ. A pseudoterm T is defined in abstract

syntax

T ≜ S |Var | T T |λVar: T . T |ΠVar: T . T

where S is the set of sorts, i.e. distinct universes that pseudoterms inhabit (we will see

examples later in this section), and Var is the countably-infinite set of variables. For

two pseudoterms M and A, MA is an application of two pseudoterms, and λx:A.B is an

abstraction where the bound variable x is typed according to A in the body determined by

B. Finally Πx:A.B is the Π-type (or dependent product), where

Πx:A.B ≜ {f | ∀a:A. fa : B[a/x]}
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adopting the notation B[N/x] for the substitution of free variable x in B with N . Because

of the variables bindings of λ and Π, we adopt FV(M) for the set of free variables of

pseudoterm M . The Π-type Πx : A.B represents a total function over domain A and range

of B with the substituted variable according to the argument of the function. This means

that if x ̸∈ FV(B), then Πx : A.B is simply an arrow type A → B (c.f. Section 3.4.1

Polymorphic typed combinatory logic).

We adopt the common notation for inference rules, where premises above the line derive

the conclusion below the line [Pierce, 2002]. The inference rules for typed λ-calculus, where

sort s is ranged over S and variable x is ranged over Var, are:

Γ, x:A ⊢M : B Γ ⊢ Πx:A.B : s

Γ ⊢ λx:A.M : Πx:A.B
(abstraction)

Γ ⊢M : Πx:A.B Γ ⊢ N : A

Γ ⊢MN : B[N/x]
(application)

which provide judgements for well-typed abstraction and application. Semantics for variable

declarations are also defined with inference rules:

Γ ⊢ A : s

Γ, x:A ⊢ x : A
if x ̸∈ Γ (variable)

Γ ⊢ B : s Γ ⊢M : A

Γ, x:B ⊢M : A
if x ̸∈ Γ (weakening)

It follows that through variable declarations in Γ, every variable belong to a sort. A pure

type system is instantiated by defining S, A ⊆ S ×S, and R ⊆ S ×S ×S, which provide

the following inference rules:

⊢ s1 : s2 if (s1, s2) ∈ A (axiom)

Γ ⊢ A : s1 Γ, x:A ⊢ B : s2
Γ ⊢ Πx:A.B : s3

if (s1, s2, s3) ∈ R (product)

We finally have one more rule for β-conversion (defined in Section 3.5 Lambda-calculus), to

indicate that β-equivalent types have the same inhabitants:

Γ ⊢M : A Γ ⊢ B : s

Γ ⊢M : B
if A =β B (conversion)
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A pure type system is defined by the triple (S,A,R), and provides the seven inference

rules described above. It is commonplace for product rules (s1, s2, s3) ∈ R to take s2 = s3

— effectively meaning that functions have the same sort as their range — so we adopt that

convention here. Each corner of the λ-cube (Figure 3-22) is defined by a pure type system

with sorts S = {Prop,Type}, corresponding to the sort of all “values” (propositions) and

the sort of all “types” respectively, and axiom A = {Prop : Type} that all values are

typed, with product rules according to Figure 3-23.

System R

λ→ (Prop, Prop)
F (Prop, Prop) (Type, Prop)
λP (Prop, Prop) (Prop, Type)
λω (Prop, Prop) (Type, Type)
λP2 (Prop, Prop) (Type, Prop) (Prop, Type)
Fω (Prop, Prop) (Type, Prop) (Type, Type)
λPω (Prop, Prop) (Prop, Type) (Type, Type)
CC (Prop, Prop) (Type, Prop) (Prop, Type) (Type, Type)

Figure 3-23: Product rules for the pure type system of each corner of the
λ-cube.

The four rules each correspond to the four features described earlier:

• (Prop, Prop) provides abstraction, so terms may depend on terms;

• (Type, Prop) provides polymorphism, so terms may depend on types;

• (Type, Type) provides type operators, so types may depend on types;

• (Prop, Type) provides dependent types, so terms may depend on types.

We can further express logic with a pure type system, via the Curry-Howard iso-

morphism, by expressing formulas (propositions, predicates) as types. With sorts S =

{Prop,Pred} and axiom A = {Prop : Pred} (effectively that predicates are sets of

propositions), we have first, second, and higher-order propositional logic from the pure type

systems with rules according to Figure 3-24, with correspondence:

• (Prop, Prop) provides implication (P ⊃ Q where P : Prop and Q : Prop);

• (Pred, Prop) provides quantification over predicates (∀x:A.B where A : Pred);
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System R

λPROP (Prop, Prop)
λPROP2 (Prop, Prop) (Pred, Prop)
λPROPω (Prop, Prop) (Pred, Type) (Pred, Pred)

Figure 3-24: Product rules for the propositional logics, where λPROP,
λPROP2, and λPROPω are isomorphic to first-, second-, and higher-order
propositional logic, respectively.

• (Pred, Pred) provides predicates that depend on predicates.

Predicate logic can be defined with the sorts S = {Prop,Pred,Set,Types} corre-

sponding to propositions, predicates, sets, and types of sets, and axioms A = {Prop :

Pred, Set : Types} with the product rules shown in Figure 3-25. Higher-order predicate

logic simply introduces products that take predicates.

System R

(Set, Set)
λPRED (Prop, Prop) (Set, Prop)

(Set, Pred)

(Set, Set) (Pred, Set)
λPREDω (Prop, Prop) (Set, Prop) (Pred, Prop)

(Set, Pred) (Pred, Pred)

Figure 3-25: Product rules for predicate logics, where λPRED and
λPREDω are isomorphic to first-order and higher-order predicate logic, re-
spectively.

As a final example of a pure type system, constructive higher order logic as in λPREDω

may be succinctly expressed using the system λHOL of Figure 3-26. Pure type systems are

often written with the notation of ⋆, □, and △ as sorts rather than words.

S ⋆,□,△
A ⋆ : □, □ : △
R (⋆, ⋆), (□,□), (□, ⋆)

Figure 3-26: λHOL, a pure type system isomorphic to constructive higher-
order logic.

Pure type systems may also be used to construct inconsistent systems, which is not

necessarily problematic for our intended use: to represent concepts. For example, λHOL
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with the added rules (△,□) and (△, ⋆) allow for polymorphism and quantification over

collections of sets/predicates/types (i.e. second-order types) — this is called System U or

λU and it is inconsistent [Coquand, 1986]. Despite its inconsistency, λU is useful for the

expression of concepts such as reflexivity29:

⊢ λA:□. λR:A→A→⋆. Πx:A. Rxx : ΠA:□. ΠR:A→A→⋆. ⋆

with arrows as shorthand for Π-types whose bindings are unused (i.e. A → B ≜ Πa:A.B

if a ̸∈ FV(B)). Given a type and a binary relation over that type, this expresses the

proposition that the given binary relation is reflexive.

We described earlier that tactics are a practical means for determining inhabitants of a

type, present in many programming languages with dependent types. We take particular

interest in programming languages such as Idris because of a feature called “elaborator

reflection,” where tactics may be expressed within the language itself, rather than as an

opaque intrinsic [Brady, 2013; Christiansen and Brady, 2016]. Such a feature makes the

distinction between a language and its runtime less salient, which we believe is important in

a representation of concepts: it enables learning to learn to be expressed in an unconstrained

manner at the object level, contrary to common approaches of rigid prebuilt meta-learning

faculty with constrained spaces of learnable parameters.

That is why we look towards a class of languages with pure type systems as a represen-

tation for concepts. Not only do they live atop Turing-complete languages such as those we

explored in the previous sections, they also (i) provide first-class objects for declaratively

defining values using types, and similarly defining types using higher-order types, where (ii)

those relations aren’t limited to constructs like polymorphism, type operators, dependent

types, or even higher-order logic30, and they can further (iii) provide the ability to represent

search procedures over terms in the language, using terms in the language.

29 This statement of reflexivity relies on the rule (△, ⋆), which actually gives a consistent system atop
λHOL. The inclusion of (△,□) breaks consistency by Girard’s paradox [Hurkens, 1995]. A term that uses
this product rule is the polymorphic identity on types:

⊢ λA:□.λa:A.a : ΠA:□.A→A

30 This is perhaps with a loss of consistency, as in the system λU. Inconsistency is acceptable because we
are not modeling the foundations of mathematics which are necessarily rigorous.
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Chapter 4

Concept Learning by Design:

Program Induction

4.1 Overview

In this chapter, we present program induction as a scheme for both problem-solving and

concept learning. Program induction is, as the name suggests, the learning of a program

from some incomplete information on the nature of the program. Program learning with

sparse data is interesting to the cognitive science community because of its correspondence

to concept learning, a class of learning tasks studied in cognitive psychology which humans

naturally encounter and in which they perform well Gweon et al. [2010]; Schulz [2012b];

Lake et al. [2017]. Unless otherwise noted, we assume a program exists in a representation

like those described in Chapter 3 Representations.

We start in Section 4.2 by discussing a variety of notable learning tasks that are well-

expressed in this scheme. In Section 4.3, we acknowledge and consider resolutions to the

problem of combinatorial explosion that is present in many program induction problems.

In Section 4.4 we discuss various learning architectures for the program induction scheme.

In Section 4.5 we outline Bayesian program learning and motivate it as a useful framework

for concept learning as program induction. In Section 4.6 we present our work on the

problem of language bootstrapping, and in Section 4.7 we present our work on the problem

of domain-general learning.

We remark that the problem of concept acquisition, which we here frame as program
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induction, is vital to any theory of concepts [Gopnik and Meltzoff, 1997; Carey, 2009, 2015].

4.2 Learning tasks

The kinds of problems that can be solved (or at least approached) with program induction

are extensive. In this section we briefly discuss a few of these learning tasks.

Input Output

Dr. Eran Yahav Yahav, E.
Prof. Kathleen S. Fisher Fisher, K.
Bill Gates, Sr. Gates, B.
George Ciprian Necula Necula, G.
Ken McMillan, II McMillan, K.

(a)

aabc → aabd
ijkk → ?

abc → abd
mrrjjj → ?

abc → abd
xyz → ?

(b)

+ –

(c)

Figure 4-1: Learning from examples. (a) String transformation problems
as present in spreadsheets [Gulwani, 2011]. Noisy cases of string transfor-
mation problems have also been explored [Devlin et al., 2017b]. The string
transformation problems are typically presented as program induction prob-
lems, where one only needs to compute outputs given new inputs directly
rather than synthesize a program. (b) Analogy-making, a form of one-shot
learning that is based on program induction, as it need not explain the
analogy to complete the problem [Hofstadter and Mitchell, 1995]. (c) The
Bongard problems provide positive and negative examples for a program
which discriminates objects in the left-hand-side from the right-hand-side
[Bongard, 1970]. This is a program synthesis problem, as the solution is
intended to be succinctly explainable.
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1. Learning from examples. This is a dataset-oriented problem of program induction.

A dataset X consists of a number of examples, usually in the form of input/output

pairs (xi, yi) ∈ X such that a program computes the corresponding output for ev-

ery input. Variations of this task include the permission of noisy data where the

input/output pairs may not be perfect models of the target program, or where a

negative dataset X̄ of examples which are not true for the program is provided, or

k-shot learning where the dataset is small | X | = k. Two perspectives on this task are

“program synthesis” and “program induction” which, though often equivalent (and

hence we may use either term in settings where they are not distinguished), are dif-

ferent for learning procedures which do not produce symbolic programs: program

synthesis is the generation of a symbolic program, whereas program induction is the

computation of output from input. The distinction is made apparent in Section 4.4.9

Neural network optimization. Popular cases of learning from examples are illustrated

in Figure 4-1.

2. Learning from traces. This is also dataset-oriented, but rather than the data being

first-class objects (i.e. inputs and outputs) to the target program, it is instead a

description of the program’s procedure itself. This can be represented with sequences

of low-level instructions that are carried out when a program is executed, and the

corresponding state transformations (i.e. memory effects).

3. Learning via “blackbox” evaluation. Under this paradigm, a likelihood model

P[x|p] is provided which scores a task x given a particular program p. For some

problems, the likelihood model can be used as a search aid to make program synthesis

more tractable1.

4. Identifying valid inputs. Given a program description (whether by the program

itself, by examples, or by other means), this task is to provide a discriminative model

which can determine whether an input is valid for the program. For example, a

program that sorts a list of numbers is incompatible with an input that is a word2.

1 For example, if the target program adds five to an input, then a likelihood model for single input x of
logP[x|p] = −|p(x)− x− 5| may improve convergence speed of the search procedure.

2 While many programming languages sort characters of a word in alphabetical or “ASCIIbetical” order,
this generalization of sorting may not be outlined in the task’s description of the sorting program.
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5. Generating valid inputs. Contrary to the discriminative model above, a generative

model over inputs allows for the sampling of inputs which a discriminative model

would accept. In particular, a good generative model for inputs should be capable

of sampling inputs subject to certain conditions. For example, given the condition

that a particular input is a list of length four, the generative model should be able to

produce an input that satisfies the condition without necessitating the use of rejection

sampling, where unsatisfactory samples are simply dropped until a satisfactory sample

is achieved.

6. Active learning and intentional input generation. This is an interactive process

usually based upon the “learning from examples” task. Given few examples, the

machine is tasked with querying an oracle that can produce a new output on any

input. These new examples should be specifically chosen to better determine the

underlying program by demonstrate paradigmatic program behavior and resolving

ambiguity. There are two major variants of this task: one where the machine knows the

true program and must provide examples that efficiently aid some inductive learning

process, and another where the machine does not know the true program and must

use inductive machinery to both infer the program and hypothesize effective queries.

From this task, adversarial input generation follows where inputs are generated that

demonstrate flaws in an induced program.

7. Determining restrictions on program output. Given a program description,

this task is to understand the nature of the program outputs. It may be in the form

of specifying an output space of the program, or in the form of constraints on outputs

depending on some inputs. For example, sorting a list of length five should always

produce a list of length five.

8. Determining conceptual dependence between programs. Given multiple pro-

gram descriptions, this task is to produce a directed graph that expresses whether a

particular program is in some manner dependent on another program. For example,

sorting may be conceptually dependent on taking the minimum of a list, while being

conceptually independent from performing elementwise multiplication on a list.
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9. Self-optimization. Given multiple program induction problems, this task is to im-

prove an inductive mechanism to more efficiently solve those problems. For example,

this may be realized by updating search heuristics or by changing the space in which

search is preformed.

In order to approach one of these tasks, researchers often synthesize their own special-

purpose datasets that are integrated with their particular models, making comparison diffi-

cult between different learning mechanisms. We provide an interactive dataset we call List-

Routines, available at https://lucasem.github.io/list-routines3, which can

be used to assess a model’s performance on many of these program induction tasks. When

we constructed List-Routines, our intent was to have a dataset that people could perform

reasonably well upon rather that a dataset that is entirely machine-directed. We crafted

a large number of numerical and sequence-based concepts, engineering them to each have

generative distributions over inputs and strong constraints on their behavior. By connect-

ing different concepts whose constraints align, we compose these “subroutine” concepts into

complex “routines” which are expressed with a directed graph of computation.

4.3 Combinatorial explosion

When working with a program induction mechanism, one must decided what the priors

are: most often, this is the determination of a programming language that the machine

uses to represent programs. This may be thought of as a choice of low-level assembly

language versus high-level languages like Python or LISP, but independent of this underlying

representation choice is the choice of domain-specificity. Domain-specificity is the extent

to which a language is engineered to express procedures in a particular domain. Such an

engineered language is called a domain-specific language (DSL). Having a DSL aids in the

combinatorial explosion that is program search: the space of programs that have description

length4 twice that of another (simpler) space is exponentially larger and hence, exponentially

harder to search.

Using a DSL constrains this search space by making relevant procedures have low de-

scription length, much like how software libraries make for simpler programs targeting some
3 Source code is located at https://github.com/lucasem/list-routines.
4 The description length of a program is a measure of the bits needed to express the program in some

representation.
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use-case. This is called the syntactic bias. Rather than reinventing immensely sophisticated

libraries, programmers adopt existing libraries. For many program induction approaches,

a hand-engineered DSL is used to constrain the machine’s search problem. However, an

apparent limitation to this is that the resulting system is only effective for that particular

domain, and a poorly engineered DSL results in impoverished problem-solving ability.

The syntactic bias extends to the program representation itself. For example, com-

binatory logic (c.f. Section 3.4 Combinatory logic) does not introduce variable bindings,

leading to a bias towards reduced flow of information across a program (every value must

be explicitly passed around the syntax tree). λ-calculus, on the other hand (c.f. Section 3.5

Lambda-calculus), does introduce variable bindings, leading to a bias towards the compu-

tational procedures themselves.

Not only is the syntactic bias used to mitigate the combinatorial explosion of program

search, but so too are other inductive biases and search heuristics. The next section de-

scribes a number of learning architectures for program induction that are for-the-most-part

representation-agnostic. They instead tackle the search problem head-on, while providing

approaches to some of the tasks described in the previous section.

4.4 Learning architectures

4.4.1 Overview

In this section, we discuss various approaches for inducing programs: Enumerative search,

Constraint satisfaction, Deductive search, Inductive search, Inductive logic programming,

Markov chain Monte Carlo, Genetic programming, and Neural network optimization. We

liken program induction to program synthesis in cases where a symbolic program is produced

by the learning mechanism.

4.4.2 Enumerative search

Enumerative search begins with a structured discrete search space and enumerates pro-

grams, often with an efficient pruning procedure. It is a straightforward approach to pro-

gram synthesis using the “generate-and-test” methodology where the efficacy of a program

is determined once it has been enumerated. Efficient enumerative program synthesizers have

shown success in program synthesis competitions, such as MagicHaskeller and Unagi
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[Katayama, 2005; Akiba et al., 2013]. An example of enumerative search in a context-free

grammar (c.f. Section 3.3 Context-free grammars) is demonstrated in Figure 4-2.

E→ 0 | 1 | Plus(E,E)

(a)

E→ 0 | N
N→ 1 | Plus(1,N)

(b)

0

1

Plus(0, 0)
Plus(0, 1)
Plus(1, 0)
Plus(1, 1)
Plus(0,Plus(0, 0))
Plus(0,Plus(0, 1))
...

(c)

0

1

Plus(1, 1)
Plus(1,Plus(1, 1))
Plus(1,Plus(1,Plus(1, 1)))
...

(d)

Figure 4-2: (a) A context-free grammar for addition, in which we can enu-
merate numbers. (b) a more sophisticated grammar over the same space,
designed for more efficient enumeration by breaking symmetries: (i) a pro-
duction of Plus cannot have 0 as one of its children and (ii) a production of
Plus cannot have another Plus production as its left child (only as its right
child). (c) Enumerating from the simple grammar. (d) Enumerating from
the sophisticated symmetry-breaking grammar.

Strategies for making enumeration more efficient include the following:

1. Depth limits provide Occam’s razor for programs and prevent programs from spend-

ing much time searching in a small subset of the intended program space.

2. Iterative-deepening with equivalence pruning uses shorter already-generated

programs to construct new programs of a given length, so that programs can be as-

serted non-redundant before they go into the pool to be used during the next (deeper)

iteration.

3. Symmetry-breaking can take the form of a modified grammar, but is typically

regarded as a set of forbidden rules. For example, a (sub-)program like (if true

...) should never be enumerated as it would be a waste of time, as with a program
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like (+ 0 ...). Symmetry-breaking can also prevent the problem of a symmetric

function such as Plus being enumerated again with the same material on its left as on

its right at some later period during enumeration. Examples of symmetry-breaking

are in Figure 4-2.

4. Probabilistic best-first enumeration, where each rule in a context-free grammar is

associated with a production probability and enumeration starts with a priori most

probable expressions.

Although enumeration is often understood with context-free grammars, it may be used

for any language on which a total ordering of programs can be constructed5. This becomes

more complicated when introducing type systems that are not simple6. Type systems

provide a natural constraint over the space of programs, so whenever enumerating typed

programs is not especially costly7, it should be preferred over untyped enumeration.

Our own work provides implementation for enumerative search on probabilistic context-

free grammars and on λ-calculus with polymorphic types as described in Section 3.5.2

Polymorphic typed lambda-calculus, both with code available at https://github.com/

lucasem/program-induction8.

4.4.3 Constraint satisfaction

Constraint programming technologies, particular SAT9 and SMT10 solvers, have demon-

strated utility in the program synthesis setting. Their use falls into four varieties of problems

[Torlak and Bodik, 2013]:

1. Program verification can be as simple as evaluating a program in a set of pre-

specified input/output examples, or more sophisticated such as by generating novel

5 This may seem like a difficult assertion, but in practice it is easy to construct such an ordering for any
language that can be defined formally.

6 Where simple refers to simple types — c.f. Section 3.4.1 Polymorphic typed combinatory logic.
7 Empirically, we found that more time is spent evaluating programs than enumerating them, even with

the scaffolding of polymorphic types and type inference using the Hindley-Milner type system.
8 Documentation is located at https://docs.rs/programinduction
9 Boolean satisfiability. In short, the SAT problem proves whether there exists an assignment to a set of

Boolean values which yield True for a propositional formula. For example, (a∨ b)∧ (¬a∨¬b)∧ c is satisfied
by the assignment {a 7→ True, b 7→ False, c 7→ True}.

10 Satisfiability modulo theories. What SAT does for propositional logic, SMT does for first-order logic by
effectively replacing Boolean values in a SAT problem with predicates over potentially non-Boolean values.
For example, (x ≤ y) ∧ ((x2 + y2 = 25) ∨ (x = 2)) ∧ (∃z ∈ N.z2 − z = y) is satisfied by {x 7→ 2, y 7→ 6}.
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inputs which help assert that a specification is met, or by asserting other program

properties than just its functional relation.

2. Program synthesis uses constraints such as input/output examples and predeter-

mined program structure to synthesize a program that meets those criteria.

3. Bug localization by identifying the maximal set of constraint clauses — correspond-

ing to execution flow of the program — that satisfy every input/output example, and

taking its complement [Jose and Majumdar, 2011].

4. Efficient debugging by determining whether an expression within a program may

be replaced with a runtime value that yields a valid program, thereby constraining

the space of repair programs for a synthesis task [Chandra et al., 2011].

Program synthesis by sketching takes a high-level program that may have implementa-

tion holes and fills in the missing implementation [Solar-Lezama et al., 2006]. The Sketch

system uses counter-example guided inductive synthesis (CEGIS) to complement an induc-

tive synthesizer by generating inputs which exhibit bugs in a synthesized program, where

both the inductive synthesizer and the CEGIS validator are optimized and translated to SAT

constraints [Solar-Lezama, 2008]. An alternative constraint-based approach uses an SMT

solver to synthesize a program that matches given input/output examples and attempts to

synthesize another distinct program which also matches the input/output examples but has

different output for some “distinguishing” input — the input is then passed into an oracle

to obtain the desired program’s output before repeating the process, or if no such distinct

program (and hence, distinguishing input) exists then the synthesis task terminates [Jha

et al., 2010].

Constraint-based synthesis has since seen development in a probabilistic framing, as

a method of inference in a generative model. One approach performs unsupervised joint

inference over programs and inputs given a domain-specific language and a prior distribu-

tion over programs, by compiling both “soft” probabilistic constraints with “hard” program

space constraints into a set of clauses for an SMT solver [Ellis et al., 2015]. The TerpreT

probabilistic programming language provides inference algorithms based on gradient de-

scent, integer linear programming, SMT solving, and the Sketch system described above

— the latter two constraint-based methods were found to outperform the other methods

[Gaunt et al., 2016].
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Another approach uses neural networks to parse noisy images into constraints for synthe-

sizing graphics programs [Ellis et al., 2017]. Program synthesis approaches that are robust

to noise are discussed in other architectures (differentiable inductive logic programming in

Section 4.4.6 Inductive logic programming; neural program learning in Section 4.4.9 Neural

network optimization) — dealing with noisy data in the constraint satisfaction setting is

difficult and not well-explored.

4.4.4 Deductive search

Deductive search recursively reduces synthesis problems into subproblems à la divide-and-

conquer by leveraging sophisticated information expressed in examples [Gulwani et al.,

2017]. We look at the approaches of inverse semantics and type-directed synthesis.

Inverse semantics associates domain-specific operators with witness functions that

transform constraints/examples for the operator into constraints/examples for synthesis

subproblems. For example, given an operator F which takes two arguments a and b, and a

specification (i.e. constraints and examples) ϕ, we are tasked with finding the a and b such

that F (a, b) |= ϕ. A witness function ωF for F transforms this problem into two problems

ωF (ϕ) 7→ (ϕa, ϕb) which take the form of new synthesis tasks a |= ϕa and b |= ϕb
11. This

amounts to effectively inverting the operator F so that an input/output pair for F entails

input/output pairs for a and b. In practice, witness functions are relaxed to provide more

useful and efficient deductive search procedures [Polozov and Gulwani, 2015].

Type-directed synthesis is a family of deductive search approaches that expresses

problems using types rather than examples. The synthesis problem is therefore to con-

structively prove that a type has an inhabitant. These approaches recursively synthesize

partial programs, starting from an empty program, according to types that were either

explicitly defined initially or deduced during synthesis. Synquid represents these types in

a type system that corresponds to an intuitionistic logic per the Curry-Howard correspon-

dence [Polikarpova et al., 2016]. Other work has adopted intuitionistic theorem-proving

techniques — primarily sequent calculus — as well as logical operations on types such as

disjunction, union, and negation to yield a framework in which a task can be specified using

a combination of examples and type constraints [Frankle et al., 2016]. Using a sophisticated

11 This is a different formulation that the one presented in Polozov and Gulwani [2015]. Nonetheless, it
presents the role of witness functions.
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type system with polymorphism, type operators, and dependent types, permits expressive

declarative definition of procedures at the type-level. See Figure 4-3 for a type-directed

synthesis task defined purely by a type rather than examples.

-- given foldr
data OList α where

Nil::OList α
Cons::x:α → OList {α|x≤v} → OList α

sort::xs:List α → {OList α|elems v = elems xs}

(a)

sort = λxs . foldr f Nil xs
where f = λt . λh . λacc .
match acc with

Nil → Cons h Nil
Cons z zs → if h ≤ z

then Cons h (Cons z zs)
else Cons z (f zs h zs)

(b)

Figure 4-3: Type-directed synthesis of sort. (a) The task is to find an
inhabitant of the sort type. Terms of the form {τ |P (v)} refer to a refined
type, whose inhabitants are every value v of type τ that satisfies the predicate
P (v). (b) The program synthesized by Synquid [Polikarpova et al., 2016].

We find type-directed synthesis to be a very motivating approaching to inducing pro-

grams that complements our interest in representations based on types, as described in

Section 3.7 Pure type systems. Type-directed synthesis provides efficient methods for fill-

ing in implementations details. From the perspective of computer-aided programming, it

enables programmers to express entire an computational workflow at the type-level, where

a machine either provides the programmer with a concrete implementation of the specified

computing system or it informs the programmer that the specification is invalid12. We

discuss more motivations for our interest in type-directed synthesis in Chapter 5 Towards

Formalized Conceptual Role.

4.4.5 Inductive search

Inductive inference consists of generalizing from examples. Every inductive inference algo-

rithm requires a priori assumptions, or an inductive bias: these inductive biases may take

form in either a language representation or in a search procedure13. Every learning archi-

tecture we discuss has inductive biases in some form. In the section, we consider inductive
12 Invalid here could mean many things: preferably it means the types are proven to have no inhabitants

and hence the specification is inconsistent, but it could be the case that the types result in an undecidable
concrete resolution, which could always happen in the setting of intuitionistic logic. If the latter is the case,
the machine might be unable to inform the programmer of the specification’s invalidity because it could be
caught in a non-terminating loop.

13 Some of the neural program synthesizers from Section 4.4.9 Neural network optimization learn a latent
representation for programs, so their inductive biases don’t quite fit this statement. Those biases are usually
characterized by the problem statement and the particular neural network architecture.
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approaches that do not fit into the other discussed architectures.

Flashfill uses a domain-specific language of string transformations based on regular

expressions: during inductive synthesis, examples are solved independently and those solu-

tions are partitioned and classified in order to merge the particular solutions to a general

synthesized program for all examples [Gulwani, 2011]. Analytical inductive programming

in the Igor2 system start with a term rewriting system (c.f. Section 3.6 Term rewriting)

where the target function is expressed by a single rule with a left-hand side (lhs) that

pattern matches on all examples, and an iterative induction process either splits a rule

into others with more-refined lhs patterns, introduces auxiliary functions as new rules that

also get induced, or introduces function calls as alterations to the right-hand side of a rule

[Hofmann and Kitzelmann, 2010; Schmid and Kitzelmann, 2011]. The λ2 synthesis tool

combines many approaches we’ve discussed in this section: inductive generalization pro-

duces type-aware sketches14 from examples by leveraging hand-crafted domain knowledge,

deductive procedures both refute sketches which are incompatible with examples and infer

sub-examples to guide search within a sketch, and finally enumeration fills in sketches sub-

ject to the deduced sub-examples and the overall program’s examples15 [Feser et al., 2015].

Figure 4-4 shows examples and a program that λ2 induces.

dropmins

[ ] 7→ [ ]

[ [ 1 ] ] 7→ [ [ ] ]

[ [ 1, 3, 5 ], [ 5, 3, 2 ] ] 7→ [ [ 3, 5 ], [ 5, 3 ] ]

[ [ 8, 4, 7, 2 ], [ 4, 6, 2, 9 ], [ 3, 4, 1, 0 ] ]

7→ [ [ 8, 4, 7 ], [ 4, 6, 9 ], [ 3, 4, 1 ] ]

(a)

dropmins x = map f x
where f y = filter g y
where g z = foldl h False y

where h t w = t || (w < z)
(b)

Figure 4-4: λ2 learns the function dropmins from four examples [Feser
et al., 2015].

4.4.6 Inductive logic programming

Inductive logic programming (ILP) involves learning a first-order logical program from

examples and background knowledge [Muggleton, 1991; Raedt, 2008]. Equipped with an

14 A sketch, recall from Section 4.4.3 Constraint satisfaction, is a partial program which may implemen-
tation holes.

15 This whole process is recursive: there may be sketches within sketches.
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interpretation, which maps from the space of logic programs to into some set of objects,

ILP learns by finding hypotheses in the search space over logic programs which satisfy a

criterion or minimize a loss function. Typically the framing is that there are a number of

positive and negative examples of some target predicate, atop some background knowledge

in the form of a true statements that do not directly involve the target predicate, and the

goal is to find the simplest consistent hypothesis which models the positive examples and

not the negative examples. An ILP problem is shown in Figure 4-5.

B = {mother(i, a), father(a, b), father(a, c), father(b, d), father(b, e),
mother(c, f), mother(c, g), mother(f, h)}

P = {target(i, b), target(i, c), target(a, d), target(a, e), target(a, f),
target(a, g), target(c, h)}

target(X,Y )← invented(X,Z), invented(Z, Y )

invented(X,Y )← father(X,Y )

invented(X,Y )← mother(X,Y )

Figure 4-5: The target concept represents the grandfather relation. Low-
ercase letters a, b, . . . represent people. B is the background knowledge, P is
the set of positive examples, and all other ground atoms involving the target
concepts are the negative examples. The clauses on the bottom are learned.
The “invented” predicate may be invented to provide a more general rule for
the target.

Search techniques in ILP primarily include inverse resolution, relative least-general gen-

eralization, Θ-subsumption, and inverse entailment [Raedt, 2008]. Resolution expands

clauses C1 using other clauses C2 to obtain new clauses C3, so inverse resolution is the

use of C1 and C3 to obtain C2 — it may also be regarding is a logic program form of

inverse inlining [Muggleton and Buntine, 1988]. Relative least-general generalization is an

approach whose goal is solely to maximally compress positive examples. Θ-subsumption is

a relationship between two clauses c1 and c2 where, using a substitution over variables θ, c1

may be transformed into a statement which is implied (or “entailed”) by c2 — it effectively

provides a generality relation g |= s [Plotkin, 1970]. Inverse entailment is a method for

finding clauses which imply other clauses [Muggleton, 1995].

Meta-interpretive learning is a technique for ILP using higher-order existentially-quant-

ified statements, which support learning compositional predicates, such as the solutions in
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Figure 4-5 which feature the invented predicate “parent” to define the target predicate, as

well as recursive definitions such as in Figure 4-6 [H. et al., 2013; Muggleton et al., 2014].

Other recent work in ILP has adopted differentiable approaches that enable training by

gradient descent (c.f. Section 4.4.9 Neural network optimization), yielding robust predi-

cate invention despite noisy data [Yang et al., 2017; Rocktäschel and Riedel, 2017; Evans

and Grefenstette, 2018] and generalization by compressed representation learning [Campero

et al., 2018].

even(0)←
even(A)← invented1(A,B), invented2(B)

invented1(A,B)← succ(B,A)

invented2(A)← invented1(A,B), even(B)

Figure 4-6: A mutually recursive procedure for the even relation, learned
with meta-interpretive learning. The “invented1” predicate corresponds to
the predecessor relation, and the “invented2” predicate corresponds with the
odd relation.

4.4.7 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are common for sampling programs in a

Bayesian framing. MCMC provide randomized general-purpose means for approximate

inference for sophisticated generative models, in practice typically using the Metropolis-

Hastings (MH) algorithm [Metropolis et al., 1953]. These methods essentially work by

stochastically generating proposals to move around in an hypothesis space towards prefer-

able hypotheses, demonstrated in Figure 4-7. In the Bayesian inference framing with prior

P(θ) and likelihood P(D|θ), the search for some hypothesis θ given data D involves sampling

from the posterior distribution:

P(θ|D) ∝ P(D|θ)P(θ)

An important feature of MCMC from a cognitive perspective is that it’s purpose is not

simply to find the best solution, but rather to explore a space of potential hypotheses. A

learner may not have a way to determine whether their current candidate hypothesis is
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Figure 4-7: Demonstration of MCMC search with the Metropolis-Hastings
algorithm, plotted in the hypothesis space. Scatter points are sampled hy-
potheses. The line indicates progression in the chain: purple refers to the
beginning while yellow refers to the end. It is probable that after many
iterations, these samples approximate the true posterior.

best, nor a way to construct better hypotheses — stochastic changes in hypotheses aids

to ensure that the learner is not stuck in a local minimum and allows hypotheses to be

sampled in a general way. However, MCMC performs a naïve search that is not deliberate

as we see in learners. Nonetheless, stochastic search with a sufficiently powerful hierarchical

generative model “provides a better account of children’s theory acquisition than alternative

computational paradigms for modeling development” [Ullman, 2015].

There is typically a closed-form procedure for the prior and likelihood, which together

form the inductive bias constituting the assumptions of a particular model, while the pos-

terior is unknown and desired. MH provides samples from this posterior given a means

to compute the prior and likelihood, where samples are determined by probabilistically

accepting or rejecting proposals. In practice, particularly for the Metropolis-Hastings al-

gorithm, a conditional sampling procedure P(θ′|θ) is provided which generates proposals

from a distribution that can be an improvement from the prior. The rational rules model

provides a standard prior and likelihood for compositional grammar-based hypotheses: it fa-

vors simpler hypotheses while preventing noisy data from preventing effective generalization

[Goodman et al., 2008].

A popular application of stochastic search via MCMC for inducing program is by es-

tablishing a probabilistic context-free grammar G (PCFG; see non-probabilistic CFGs in

Section 3.3 Context-free grammars) over programs as hypotheses and inducing a production
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E which explains the data D:

P(E|D,G) ∝ P(D|E,G)P(E|G)

A PCFG associates each production rule of a CFG with a probability, or production prob-

ability (r, pr) ∈ G, thereby yielding a derivation probability for any production from the

grammar (as the product of the production probability for every production rule that was

used in constructing the production):

pderiv(E|G) =
∏

r∈deriv(E)

pr

The derivation probability on its own acts as a prior P(E|G) = pderiv(E|G) that is heavily

biased on the grammar’s production probabilities. In practice, the production probabilities

are induced using the inside-outside algorithm [Lafferty, 2000] or a different prior is used

such as from the rational rules model which does not make strong assumptions on production

probabilities [Goodman et al., 2008]. Under this popular approach, the CFG is designed to

have an interpreter16 which evaluates a production on a datum d ∈ D to yield a truth value:

E(d) 7→ {True,False}. It is trivial to construct an all-or-nothing likelihood measure:

P(E|D,G) =
∏
d∈D

1True (E(d))

To account for noisy data where such a strict measure fails, the rational rules model provides

exponential decay in the number of objects that yield False. This PCFG- and interpreter-

based approach has been used to induce Boolean expressions [Goodman et al., 2008], rich

logical theories [Kemp et al., 2008a; Kemp, 2012], hierarchical concept theories as in physics

and psychology [Ullman, 2015], and number concepts [Piantadosi et al., 2012]. These ap-

proaches use grammars that resemble propositional or predicate logic and are computed as

such by the interpreter.

Other work has applied MCMC methods to combinatory logic (c.f. Section 3.4 Combi-

natory logic), assembly instructions, and first-order term rewriting (c.f. Section 3.6 Term

rewriting) [Liang et al., 2010; Schkufza et al., 2013; Rule et al., 2018]. One of these ap-

proaches aims not just to induce target programs, but also to induce reusable modules that
16 As we discussed in Section 3.3 Context-free grammars.
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are useful [Liang et al., 2010].

4.4.8 Genetic programming

Genetic programming (GP) uses the Darwinian principle of natural selection to evolve a

population of computer programs using genetic operators [Koza, 1994]. It therefore has

two primary components: a fitness function which is the determiner for natural selection,

and genetic operators which produce offspring and drive evolution. The fitness function

is defined according to a pre-determined task specification, and the genetic operators are

defined based on the program representation. An outline of genetic programming is shown

in Figure 4-8.

Genesis Population

Offspring

Mutation Natural selection

Figure 4-8: Genetic programming. Genesis is the creation of an initial
population. Offspring are produced by performing genetic operators on the
population. Through natural selection, the new population is determined.

The genetic operators on a per-individual basis (i.e. asexual reproduction) often include

subtree mutation, point mutation, and hoist mutation17, with multi-individual operators

derived from crossover (i.e. sexual reproduction) usually by swapping subtrees [Poli et al.,

2008]. Hierarchical modular structure can be passed down across generations using auto-

matic function definition and other “architecture-altering” operations that affect program

structure to allow the emergence of hierarchy through abstraction [Koza, 1994; Olsson, 1994].

Constraints may be imposed, such as using types, to ensure that reproduction yields se-

mantically valid programs. Or, rather than manipulating programs, genetic operators could

manipulate program development where an individual’s efficacy (tested during natural se-

lection with the fitness function) is based on growing a program from the genetic material:

a notable example of this is in neuro-evolution where neural networks are a evolved through

network-generating procedures [Gruau, 1994; Stanley and Miikkulainen, 2002]. Another

approach replaces genetic operators through the evolutionary process using “autoconstruc-

tive evolution” in which code-manipulating instructions make programs generate their own
17 Hoist mutation creates an offspring directly from a subtree of its parent.
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offspring [Spector et al., 2005].

Fitness functions are vital to GP because without a good method of natural selection, vi-

able offspring will not flourish. This is, however, a double-edged sword: fitness functions are

often hard to define, may limit the variety of offspring that emerge after many generations,

and can even prevent the objective from being achieved altogether [Lehman and Stanley,

2011]. There are two research directions in GP to counter these limitations: co-evolution

in which different populations interact with the same environment and conditionally evolve

on each others’ environmental effects, and novelty search which favors behaviors that other

individuals in the population do not exhibit.

4.4.9 Neural network optimization

Neural network (c.f. Section 3.2 Neural networks) parameters are typically learned by

performing gradient descent given a loss function for the network outputs and a regularizer

for the network parameters. Each neuron is a differentiable function, and the way neurons

are combined in neural networks make the entire network differentiable by propagating cost

information back through the network to compute the gradient [Rumelhart and McClelland,

1986]. The resulting system allows network parameters to be learned given input/output

pairs — the training set — and a loss function, by computing ∇θJ(θ) where J(θ) is the loss

computed using the training set18 [Goodfellow et al., 2016]. This optimization problem can

be approached with stochastic gradient descent, illustrated in Figure 4-9. A regularizer term

in the loss function is intended to prevent overfitting, so that the networks doesn’t effectively

“memorize” the training set and failing to generalize as demonstrated in Figure 4-10.

For learning programs, there are two high-level approaches that neural network re-

searchers have taken which are not distinguished in other architectures: program synthesis

and program induction. Program synthesis is where the neural network generates a symbolic

program, whereas program induction has the neural network learn a latent representation

and acts as an evaluator for the latent program.

Neural program induction has been used to emulate a simple CPU, including stack-

based memory or random access memory [Graves et al., 2014; Joulin and Mikolov, 2015;

Kurach et al., 2015; Graves et al., 2016]. One neural program induction approach, called

18 For example, J(θ) = 1
|D|

∑
(x,y)∈D(y− fθ(x))

2 for network fθ is based only on square loss with training
set D. If fθ has enough parameters, this cost function may easily result in overfitting.
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the neural programmer-interpreter, learns how to represent and compute algorithms given

program traces [Reed and De Freitas, 2015]. In neural program synthesis, Deepcoder uses a

neural network to propose a distribution on which symbolic search techniques are performed

[Balog et al., 2017], while the approaches of both NSPS and Robustfill provide an end-to-end

neural network that directly produces programs from examples [Parisotto et al., 2016; Devlin

et al., 2017b]. These program synthesis approaches require massive annotated datasets for

training (e.g. hundreds of millions in Devlin et al. [2017b]), so generalization happens

through numerous examples rather than few examples. However, we will demonstrate in

Section 4.6 Language bootstrapping how we used neural networks to provide amortized

inference in a Bayesian program learning (c.f. Section 4.5 Bayesian program learning)

system despite having no annotated examples and sparse data.

Some neuro-symbolic19 approaches are able to learn from sparse data using reinforce-

ment learning: for example, Chen et al. [2018] train a neural network to program a non-

differentiable parser from hundreds of input/output pairs.

19 Neuro-symbolic means that neural networks may consume or produce symbolic structure, usually using
recurrent networks. All neural program synthesizers are therefore neuro-symbolic because they produce
symbolic programs.

Figure 4-9: Learning landscape for a differentiable function, where lateral
axes correspond to the parameter space (i.e. values of θ) and the height cor-
responds to the cost J(θ). The arrow indicates a step of stochastic gradient
descent towards a lower-cost point in the space by following −∇θJ(θ).
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Figure 4-10: Overfitting: the orange curve overfits the data, while the blue
curve is regularized.

4.5 Bayesian program learning

Bayesian program learning (BPL) is a generative model that samples programs, where pro-

grams are generative models that sample observations (or examples). That is to say, BPL is

a hierarchical Bayesian model for programs and program behaviors. This consolidates two

otherwise-independent accounts of inductive generalization: one which leverages domain-

general statistical inference (e.g. pattern recognition, correlation), and another which lever-

ages sophisticated domain-specific representations [Tenenbaum et al., 2006, 2011]. Infer-

ence in a hierarchical Bayesian model provides an approach for learning and reasoning from

sparse data and inferring structured knowledge which may be domain-agnostic. Rather

than describe how inference happens, hierarchical Bayesian models described what happens

— i.e. it is a computation-level theory and not an algorithmic-level theory [Marr, 1982].

BPL provides an account of how people learn intuitive theories, abstract frameworks that

guide learning within particular domains [Carey, 1985, 2009; Gopnik and Meltzoff, 1997;

Ullman et al., 2012; Goodman et al., 2015]. The hierarchical structure in BPL yields rapid

acquisition of abstract knowledge, which develops the inductive biases so lower-level knowl-

edge can be learned quickly, effectively, and with fewer data: this is called the “blessing

of abstraction,” manifested by learning-to-learn through the hierarchy [Tenenbaum et al.,

2011; Goodman et al., 2011].

Bayesian accounts of learning can incorporate general biases like rationality and concept

reuse [Johnson et al., 2007; Goodman et al., 2008; Liang et al., 2010; Dechter et al., 2013;

O’Donnell, 2015]. Models based on BPL have shown success in cognitive studies of inductive
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reasoning [Kemp and Tenenbaum, 2009], causal learning [Griffiths and Tenenbaum, 2009;

Goodman et al., 2011], intuitive theories [Ullman et al., 2012], word learning [Frank et al.,

2009], numerical concept learning [Piantadosi et al., 2012], and handwritten characters

[Lake et al., 2015]. These models are all able to learn and generalize from few examples.

Additionally, while search itself is often done stochastically by MCMC (c.f. Section 4.4.7

Markov chain Monte Carlo) because it follows easily from the Bayesian framing, other

approaches may be applied to sampling for BPL such as amortized inference with neural

networks (c.f. Section 4.6 Language bootstrapping) and constraint satisfaction [Ellis et al.,

2016].

Bayesian program learning as a model for cognition acts as a probabilistic language of

thought (c.f. LOT in Chapter 2 Computational Framing of Representation and Learning).

It unites statistical and highly-structured symbolic frameworks, each of which saw develop-

ments for cognitive modelling and cognitive architecture despite heated debate between the

two [Fodor and Pylyshyn, 1988; McClelland and Patterson, 2002; Pinker and Ullman, 2002].

Another historical debate in cognitive science has been between empiricism and nativism:

is knowledge derived generally from experience, or is it constructed through hard-wired

special-purpose faculty? BPL provides a computational perspective where both nature and

nurture are necessary and explicitly outlined to the system. Using BPL to model a cog-

nitive process therefore necessitates a decision of what to build in: “what are the priors?”

as a Bayesian scientist often asks. An appeal to developmental science, which provides

empirical evidence for core knowledge to answer these precise concerns, should be made

when designing experiments that intend to model child behavior [Spelke, 1998; Spelke and

Kinzler, 2007; Carey, 2009]. Furthermore, adopting Turing-complete representations (c.f.

Chapter 3 Representations) permits the expression of novel complex concepts and, most

critically, BPL provides an account for learning in such representations and to do so in an

unbounded manner, thereby making BPL the only system which can in principle learn ar-

bitrarily complex representations such as those adults may possess [Piantadosi and Jacobs,

2016]. Finally, BPL is more than a system for modeling abstract concepts: by expressing

knowledge at many levels of abstraction, it can be integrated across amodal and multi-

sensory representations to yield cross-modal transfer of knowledge [Yildirim and Jacobs,

2015].

77



4.6 Language bootstrapping

4.6.1 Introduction

Successful approaches to program induction require a hand-engineered domain-specific lan-

guage (DSL), constraining the space of allowed programs and imparting prior knowledge of

the domain. In this section, we contribute a program induction algorithm called Dream-

Coder that learns a DSL and trains a neural network to efficiently search for programs in

the learned DSL [Ellis et al., 2018]. We use our model to solve symbolic regression prob-

lems, edit strings, and synthesize functions on lists, in each case showing the model learns

a domain-specific vocabulary for expressing solutions to problems in the domain.

Automatically inducing programs from examples is a long-standing goal of artificial intel-

ligence. Recent work has successfully used symbolic search techniques (e.g., Metagol: [Mug-

gleton et al., 2015], FlashFill: [Gulwani, 2011]), neural networks trained from a corpus of

examples (e.g., RobustFill: [Devlin et al., 2017b]), and hybrids of neural and symbolic meth-

ods (e.g., Neural-guided deductive search: [Kalyan et al., 2018], DeepCoder: [Balog et al.,

2017]) to synthesize programs for task domains such as string transformations, list pro-

cessing, and robot navigation and planning (these approached are discussed in more detail

above, in Section 4.4 Learning architectures). However, all these approaches – symbolic,

neural and neural-symbolic – rely upon a hand-engineered DSL. The DSL is an inventory

of restricted programming primitives, encoding domain-specific knowledge about the space

of programs. In practice we often have only a few input/output examples for each program

to be induced, and thus success often hinges on having a good DSL that provides a crucial

inductive bias for what would otherwise be an unconstrained search through the space of

all computable functions. Here we ask, to what extent can we dispense with such highly

hand-engineered domain-specific languages?

We propose learning the DSL. We consider the setting where we have a collection of

related programming tasks, each specified by a set of input/output examples. We do not

assume that the tasks are annotated with ground-truth programs. We typically will not try

to learn a DSL completely from scratch, but rather to start from a weaker or more general

set of primitives and construct a richer, more powerful, and better-tuned DSL.

Our algorithm is called DreamCoder because it is based on a novel kind of “wake-

sleep” learning (c.f. [Hinton et al., 1995]), iterating between “wake” and “sleep” phases to
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achieve three goals: finding programs that solve tasks; creating a DSL by discovering and

reusing domain-specific subroutines; and training a neural network that efficiently guides

search for programs in the DSL. The learned DSL distills commonalities across programs

that solve tasks, helping the agent solve related program induction problems. The neural

network ensures that searching for programs remains tractable even as the DSL (and hence

the search space for programs) expands.

Viewed as a probabilistic inference problem per Bayesian program learning (c.f. Sec-

tion 4.5 Bayesian program learning), our goal is to jointly infer a single DSL (written D)

and many programs (written p), one for each set of inputs/outputs (tasks, written x, which

comprise the task set X). A DSL D is a collection of domain-specific subroutines. We

equip D with a real-valued weight vector θ, and together (D, θ) define a distribution over

programs. Figure 4-11a diagrams this inference problem as a hierarchical Bayesian model.

Inference in this model is difficult because the programs are unobserved, and so we must

solve a hard search problem to recover them. To make search tractable we learn a bottom-up

recognition model (written q(·)) illustrated in Figure 4-11b). The recognition model q(·) is a

neural network that regresses from input/output pairs to a distribution over programs likely

to explain the input/outputs. We can also view q(·) as implementing an amortized inference

scheme [Le et al., 2017]. The neural recognition model and the generative model embodied

in the DSL jointly train each other, as they iteratively learn to solve more programming

tasks.

D θ

p

x

x ∈ X

(a)

D

p θ(x)

x

x ∈ X

q(x)

(b)

Figure 4-11: (a) DSL D generates programs p by sampling DSL primi-
tives according to probabilities θ. From each program we observe a task x
(program inputs/outputs). (b) Neural network q(·), the recognition model,
regresses from x to the parameters of a distribution over programs, θ(x).
Black/red arrows correspond to the generative/recognition models.

We apply DreamCoder to three domains: symbolic regression; FlashFill-style [Gul-
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wani, 2011] string processing problems; and Lisp-style functions on lists. For each of these

we deliberately provide an impoverished set of programming primitives, and show that

our algorithm discovers its own domain-specific vocabulary for expressing solutions in the

domain, highlighted in Figure 4-12.

List Functions Text Editing Symbolic Regression

Pr
og

ra
m

s
&

Ta
sk

s [7 2 3]→[7 3]
[1 2 3 4]→[3 4]
[4 3 2 1]→[4 3]
f(ℓ) =(f1 ℓ (λ (x)

(> x 2)))

[2 7 8 1]→8
[3 19 14]→19
f(ℓ) =(f2 ℓ)

[7 3]→False
[3]→False

[9 0 0]→True
[0]→True

[0 7 3]→True
f(ℓ) =(f3 ℓ 0)

+106 769-438→106.769.438
+83 973-831→83.973.831
f(s) =(f0 “.” “-”

(f0 “.” “ ”
(cdr s)))

Lara Gregori→LG
Temple Anna H→TAH

f(s) =(f2 s)

f(x) =(f1 x) f(x) =(f6 x)

f(x) =(f4 x) f(x) =(f3 x)

D
SL

f0(ℓ,r) =(foldr r ℓ cons)
(f0: Append lists r and ℓ)

f1(ℓ,p) =(foldr ℓ nil (λ (x a)
(if (p x) (cons x a) a)))

(f1: Higher-order filter function)
f2(ℓ) =(foldr ℓ 0 (λ (x a)

(if (> a x) a x)))
(f2: Maximum element in list ℓ)

f3(ℓ,k) =(foldr ℓ (is-nil ℓ)
(λ (x a) (if a a (= k x))))

(f2: Whether ℓ contains k)

f0(s,a,b) =(map (λ (x)
(if (= x a) b x)) s)

(f0: Performs character substitution)
f1(s,c) =(foldr s s (λ (x a)

(cdr (if (= c x) s a))))
(f1: Drop characters from s until c reached)

f2(s) =(unfold s is-nil car
(λ (z) (f1 z “ ”)))

(f2: Abbreviates a sequence of words)
f3(a,b) =(foldr a b cons)

(f3: Concatenate strings a and b)

f0(x) =(+ x real)
f1(x) =(f0 (* real x))
f2(x) =(f1 (* x (f0 x)))
f3(x) =(f0 (* x (f2 x)))
f4(x) =(f0 (* x (f3 x)))

(f4: 4th order polynomial)
f5(x) =(/ real x)
f6(x) =(f4 (f0 x))

(f6: rational function)

Figure 4-12: Top: Tasks from each domain, each followed by the pro-
grams DreamCoder discovers for them. Bottom: Several examples from
learned DSL. Notice that learned DSL primitives can call each other, and
that DreamCoder rediscovers higher-order functions like filter (f1 in List
Functions)

4.6.2 Related work

Our work is far from the first for learning to learn programs, an idea that goes back to

Solomonoff Solomonoff [1989]:

Deep learning: Much recent work in the ML community has focused on creating neural

networks that regress from input/output examples to programs [Menon et al., 2013; Balog

et al., 2017; Devlin et al., 2017b,a]. DreamCoder’s recognition model draws heavily

from this line of work, particularly from Menon et al. [2013]. We see these prior works

as operating in a different regime: typically, they train with strong supervision (i.e., with

annotated ground-truth programs) on massive data sets (i.e., hundreds of millions [Devlin

et al., 2017b]). Our work considers a weakly-supervised regime where ground truth programs
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are not provided and the agent must learn from at most a few hundred tasks, which is

facilitated by our “Helmholtz machine” style recognition model.

Inventing new subroutines for program induction: Several program induction al-

gorithms, most prominently the EC algorithm [Dechter et al., 2013], take as their goal to

learn new, reusable subroutines that are shared in a multitask setting. We find this work

inspiring and motivating, and extend it along two dimensions: (1) we propose a new algo-

rithm for inducing reusable subroutines, based on Fragment Grammars [O’Donnell, 2015],

which permits learning routines that are more complex that subexpressions of programs;

and (2) we show how to combine these techniques with bottom-up neural recognition mod-

els. Other instances of this related idea are [Liang et al., 2010], Schmidhuber’s OOPS model

[Schmidhuber, 2004], and predicate invention in Inductive Logic Programming Lin et al.

[2014].

Bayesian Program Learning: Our work is an instance of Bayesian program learning

(BPL; see Section 4.5 Bayesian program learning). Previous BPL systems have largely

assumed a fixed DSL (but see Liang et al. [2010]; Dechter et al. [2013]), and our contribution

here is a general way of doing BPL with less hand-engineering of the DSL.

4.6.3 DreamCoder

Our goal is to induce a DSL while finding programs solving each of the tasks. We take

inspiration from the Wake/Sleep algorithm [Hinton et al., 1995], as well as the exploration-

compression algorithm (EC) for bootstrap learning [Dechter et al., 2013]. Wake/Sleep

alternates between training a generative model on samples from a recognition model (our

q), and training a recognition model on samples from the generative model (our D, θ). EC

alternates between exploring the space of solutions to a set of tasks, and compressing those

solutions to suggest new search primitives for the next exploration stage. We combine these

ideas into an inference strategy that iterates through three steps: a Wake cycle uses the

current DSL and recognition model to search for programs that solve the tasks. The Sleep-

G and Sleep-R cycles update the DSL and the recognition model, respectively. Crucially,

these steps bootstrap off each other, diagrammed in Figure 4-13.

Wake: Searching for programs. Our program search is informed by both the DSL and

the recognition model. When these improve, we find more programs solving the tasks.

Sleep-G: Improving the DSL. We induce the DSL from the programs found in the wake
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Figure 4-13: DreamCoder solves for programs, the DSL, and a recogni-
tion model. Each of these steps bootstrap off of the others in a Helmholtz-
machine inspired wake/sleep inference algorithm.

phase, aiming to maximally compress (or, raise the prior probability of) these programs.

As we solve more tasks, we hone in on richer DSLs that more closely match the domain.20

Sleep-R: Learning a neural recognition model. We update the recognition model by

training on two data sources: samples from the DSL (as in the Helmholtz Machine’s “sleep”

phase), and programs found by the search procedure during waking. As the DSL improves

and as search finds more programs, the recognition model gets both more data to train on,

and better data.21

Section 4.6.3 Probabilistic framing frames this 3-step procedure as a means of maximiz-

ing a lower bound on the posterior probability of the DSL given the tasks. Section 4.6.3

Wake phase: searching for programs explains how we search for programs that solve the

tasks; Section 4.6.3 Sleep-R: Learning a recognition model explains how we train a neural

network to search for programs; and Section 4.6.3 Sleep-G: Learning a generative model (a

DSL) explains how we induce a DSL from programs.

Probabilistic framing

DreamCoder takes as input a set of tasks, written X, each of which is a program induction

problem. It has at its disposal a likelihood model, written P[x|p], which scores the likelihood

of a task x ∈ X given a program p. Its goal is to solve each of the tasks by writing a program,

and also to infer a DSL D.

We frame this problem as maximum a posteriori (MAP) inference in the generative
20 This is loosely biologically inspired by the formation of abstractions during sleep memory consolida-

tion Dudai et al. [2015].
21 These two sources are also loosely biologically inspired by the distinct episodic replay and hallucination

components of dream sleep Fosse et al. [2003].
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model diagrammed by Figure 4-11a. Writing J for the joint probability of (D, θ) and X,

we want the D∗ and θ∗ solving:

J(D, θ) ≜ P[D, θ]
∏
x∈X

∑
p

P[x|p]P[p| D, θ]

D∗ = argmax
D

∫
J(D, θ) dθ (4.1)

θ∗ = argmax
θ

J(D∗, θ)

The above equations summarize the problem from the point of view of an ideal Bayesian

learner. However, Equation 4.1 is intractable because calculating J involves taking a sum

over every possible program. We therefore define the frontier of a task x, written Fx, to

be a finite set of programs where P[x|p] > 0 for all p ∈ Fx and establish an intuitive lower

bound L :

J ≥ L ≜ P[D, θ]
∏
x∈X

∑
p∈Fx

P[x|p]P[p| D, θ]

DreamCoder does approximate MAP inference in the generative model of Figure 4-11a

by maximizing this lower bound on the joint probability, alternating maximization w.r.t.

the frontiers (Wake) and the DSL (Sleep-G):

Program search: maximizing L w.r.t. the frontiers. Here the DSL and distribution

(D, θ) are fixed and we want to find new programs to add to the frontiers so that L increases

the most, which are programs where P[x, p| D, θ] is large.

DSL induction: maximizing
∫

L dθ w.r.t. the DSL. Here the frontier {Fx}x∈X is

held fixed, so we can evaluate L . Now the problem is that of searching the discrete space

of DSLs and finding one maximizing
∫

L dθ. Once we have a DSL D we can update θ to

argmaxθ L (D, θ, {Fx}).

Searching for programs is hard because of the large combinatorial search space. We ease

this difficulty by training a neural recognition model during the Sleep-R phase:

Recognition model: making program search tractable. Here we train a neural

network, q, to predict a distribution over programs conditioned on a task. The objective of

q is to assign high probability to programs p where P[x, p| D, θ] is large, because including

those programs in the frontiers will most increase L . Rather than directly predicting a

distribution over p conditioned on x, the recognition model predicts a distribution θ(x) over
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components of the DSL. This taps into the intuition that programming is primarily a top-

down activity: as human programmers, we often first decide what kind of programming

constructs we might need to use, and then we figure out how to assemble them in to the

desired program.

Wake phase: searching for programs

Now our goal is to search for programs that solve the tasks. In this work we use the

simple search strategy of enumerating programs from the DSL in decreasing order of their

probability, and then checking if an enumerated program p assigns positive probability to

a task (P[x|p] > 0); if so, we incorporate p into the frontier Fx.

To make this concrete we need to define what programs actually are, what form P[p| D, θ]

takes, and how P[x|p] is evaluated. We represent programs as λ-calculus expressions in a

Hindler-Milner polymorphic type system as described in Section 3.5.2 Polymorphic typed

lambda-calculus, and we adopt the notion described there. We say a type α unifies with

τ if every expression p : α also satisfies p : τ . Furthermore, the act of unifying a type α

with τ is to introduce constraints on the type variables of α to ensure that α unifies with τ .

With the representation of λ-calculus, we associate each task x with a set of input/output

examples (i, o) ∈ x and define the “all-or-nothing” likelihood model asserting that the

program satisfies for each example:

P[x|p] ≜
∏

(i,o)∈x

1 (p(i) = o)

A DSL D is a set of typed λ-calculus expressions. A weight vector θ for a DSL D is a

vector of | D |+1 probabilities: one for each DSL primitive e ∈ D, written θe, and a weight

controlling the probability of a variable occurring in a program, θvar. Algorithm 1 is a

procedure for drawing samples from the generative model (D, θ). In practice, we enumerate

programs rather than sampling them. Enumeration proceeds by a depth-first search over the

random choices made by Algorithm 1; we wrap the depth-first search in iterative deepening

to build λ-calculus expressions in order of their probability.

Why enumerate, when the program synthesis community has invented many sophisti-

cated algorithms that search for programs22? We have two reasons: (1) A key point of

22 Many of these sophisticated algorithms were discussed earlier in Section 4.4 Learning architectures. For
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Algorithm 1 Generative model over programs
function sample(D, θ, E = ∅, τ):
Input: DSL D, weight vector θ, environment E , type τ
Output: a program whose type unifies with τ
if τ = α→ β then

var ← an unused variable name
body ∼ sample (D, θ, {var : α} ∪ E , β)
return (lambda (var)body)

end if
primitives← {p|p : τ ′ ∈ D ∪E

if τ can unify with yield(τ ′)}
Draw e ∼ primitives, w.p. ∝ θe if e ∈ D

w.p. ∝ θvar
|variables| if e ∈ E

Unify τ with yield(τ ′).
{αk}Kk=1 ← args(τ ′)
for k = 1 to K do

ak ∼ sample(D, θ, E , αk)
end for
return (e a1 a2 · · · aK)

where:

yield(τ) =

{
yield(β) if τ = α→ β

τ otherwise.

args(τ) =

{
[α] + args(β) if τ = α→ β

[] otherwise.

our work is that learning the DSL along with a neural recognition model can make pro-

gram induction tractable, even if the search algorithm is very simple. (2) Enumeration is

a general approach that can be applied to any program induction problem — many of the

state-of-the-art approaches for search require special conditions or hand-engineered features

in the space of programs that enumeration does not require.

A drawback of using an enumerative search algorithm is that we have no efficient means

of solving for arbitrary constants that might occur in the program. In Section 4.6.4 Symbolic

regression, we will show how to find programs with real-valued constants by automatically

differentiating through the program and setting the constants using gradient descent.

the paradigm we take, the works of Solar-Lezama [2008]; Schkufza et al. [2013]; Feser et al. [2015]; Osera
and Zdancewic [2015]; Polozov and Gulwani [2015] are particularly relevant.
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Sleep-R: Learning a recognition model

The purpose of the recognition model is to accelerate the search for programs. It does this

by learning to predict programs which are probable under (D, θ) while also assigning high

likelihood for a task according to P[x|p].

The recognition model q is a neural network that predicts, for each task x ∈ X, a weight

vector q(x) = θ(x) ∈ [0, 1]| D |+1. After normalizing to satisfy total probability, this with

the DSL together define a distribution over programs: P[p| D, θ = q(x)]. We abbreviate

this distribution as q(p|x). The crucial aspect of this framing is that the neural network

leverages the structure of the learned DSL, so it is not responsible for generating programs

wholesale. We share this aspect with DeepCoder [Balog et al., 2017].

We want a recognition model that closely approximates the true posteriors over pro-

grams. We formulate this as minimizing the expected KL-divergence,

min E
x∼X

[KL (P[p|x,D, θ] ∥, q(p|x))] ⇐⇒ max E
x∼X

[∑
p

P[p|x,D, θ] log q(p|x)

]

One could take this expectation over the observed empirical distribution of tasks, like how an

autoencoder is trained [Hinton and Salakhutdinov, 2006], or one could take this expectation

over samples from the generative model, like how a Helmholtz machine is trained [Dayan

et al., 1995]. We found it useful to maximize both an autoencoder-style objective LAE and

a Helmholtz-style objective LHM, giving the objective for a recognition model, LRM:

LRM = LAE + LHM (4.2)

LHM = E
p∼(D,θ)

[log q(p|x)] , p evaluates to x

LAE = E
x∼X

∑
p∈Fx

P [x, p| D, θ]∑
p′∈Fx

P [x, p′| D, θ]
log q(p|x)


The LHM objective is essential for data efficiency: all of our experiments train Dream-

Coder on only a few hundred tasks, which is too few for a high-capacity neural network q.

Once we bootstrap a (D, θ), we can draw unlimited samples from (D, θ) and train q on those

samples. Evaluating LHM involves sampling programs from the current DSL, running them

to get their outputs, and then training q to regress from the input/outputs to the program.

Since these programs map inputs to outputs, we need to sample the inputs as well. Our
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solution is to sample the inputs from the empirical observed distribution of inputs in X.

The architecture of q depends upon the domain. It regresses from an observation x, as

a set of input/output pairs (i, o) ∈ x, to a | D |+ 1 dimensional vector. Each input/output

pair is processed by an identical encoder network; the outputs of the encoders are averaged

and passed to an MLP with 1 hidden layer, 32 hidden units, and a ReLU activation, before

finally being normalized for total probability:

q(x) = Normalize
(

MLP
(

Average
(
{Encode (i, o)}(i,o)∈x

)))
For the string editing and list function domains, the inputs and outputs are sequences. Our

encoder for these domains is a bidirectional GRU (c.f. [Cho et al., 2014]) with 64 hidden

units that reads each input/output pair where we concatenate the input and output with a

special delimiter symbol between them. We MaxPool the final hidden unit activations in the

GRU along both passes of the bidirectional GRU. For symbolic regression, the input/output

pairs are densely sampled points along the curve of the function. We rendered these points

to a graph, and pass the image of the graph to a convolutional network, which acts as the

encoder.

Sleep-G: Learning a generative model (a DSL)

The purpose of the DSL is to offer a set of abstractions that allow an agent to easily express

solutions to the tasks at hand. In the DreamCoder algorithm we infer the DSL from

a collection of frontiers. Intuitively, we want the algorithm to look at the frontiers and

generalize beyond them, both so the DSL can better express the current solutions, and also

so that the DSL might expose new abstractions which will later be used to discover more

programs.

Recall from the Probabilistic framing that we want the DSL maximizing
∫

L dθ. We

replace this with an AIC approximation, giving the following objective for DSL induction:

logP[D] + argmax
θ

∑
x∈X

log
∑
p∈Fx

P[x|p]P[p| D, θ] + logP[θ| D]− ∥θ∥0 (4.3)

We induce a DSL by searching locally through the space of DSLs, proposing small local

changes to D until Equation 4.3 fails to increase. The search moves work by introducing
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new λ-expressions into the DSL. We propose these new expressions by extracting fragments

of programs already in the frontiers (Figure 4-14). An important point here is that we are

not simply adding subexpressions of programs to D, as done in the EC algorithm [Dechter

et al., 2013] and other prior work [Lin et al., 2014]. Instead, we are extracting fragments that

unify with programs in the frontiers.This idea of storing and reusing fragments of expressions

comes from Fragment Grammars [O’Donnell, 2015] and Tree-Substitution Grammars [Cohn

et al., 2010], and is closely related to the idea of antiunification Henderson [2013].

We define a prior distribution over DSLs which penalizes the sizes of the λ-calculus

expressions in the DSL, and put a Dirichlet prior over the weight vector:

P[D] ∝ exp

−λ∑
p∈D

size(p)

 (4.4)

P[θ| D] = Dir(θ|α) (4.5)

where size(p) measures the size of the syntax tree of program p, λ is a hyperparameter that

acts as a regularizer on the size of the DSL23, and α is a concentration parameter controlling

the smoothness of the prior over θ24. Algorithm 2 specifies the DSL induction algorithm.

To appropriately score each proposed D we must reestimate the weight vector θ. Al-

23 Implementation detail: we assigned λ = 1.
24 Implementation detail: we assigned α = 10.
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Example programs in frontiers Proposed λ-expression

(λ(ℓ)(map (λ(x)(index xℓ))

(range (- (lengthℓ)1))))

(λ(ℓ)(map (λ(x)(index xℓ))

(range (+ 1 1))))

(map (λ(x)(index xℓ))

(rangeα))

(λ(s)(map (λ(x)

(if (= x ’.’)’-’ x)))s)

(λ(s)(map (λ(x)

(if (= x ’-’)’,’ x)))s)

(λ(s)(map (λ(x)

(if (= xα)βx)))s)

Figure 4-14: Left: syntax trees of two programs sharing common struc-
ture, highlighted in orange, from which we extract a fragment and add it
to the DSL (bottom). Right: actual programs, from which we extract
fragments that (top) slice from the beginning of a list or (bottom) perform
character substitutions.
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Algorithm 2 DSL Induction Algorithm
Input: Set of frontiers {Fx}
Hyperparameters: Pseudocounts α, regularization parameter λ
Output: DSL D, weight vector θ
Define L(D, θ) =

∏
x

∑
p∈Fx

P[p| D, θ]
Define θ∗(D) = argmaxθ Dir(θ|α)L(D, θ)
Define score(D) = logP[D] + L(D, θ∗)− ∥θ∥0
D ← every primitive in {Fx}
while true do

N ← {D∪{s}|x ∈ X, p ∈ Fx, s a fragment of p}
D′ ← argmaxD′∈N score(D′)
if score(D′) < score(D) return D, θ∗(D)
D ← D′

end while

though this problem may seem very similar to estimating the parameters of a probabilistic

context free grammar (PCFG), for which we have effective approaches like the Inside/Out-

side algorithm [Lafferty, 2000], a DSL in DreamCoder may be context-sensitive due to

the presence of variables in the programs and also due to the polymorphic typing system.

We derive a tractable MAP estimator for θ:

Estimating θ

We use an expectation-maximization (EM) algorithm to estimate the continuous parameters

of the DSL, e.g. θ. Suppressing dependencies on D, the EM updates are

θ = argmax
θ

logP(θ) +
∑
x

E
Qx

[logP [p|θ]] (4.6)

Qx(p) ∝ P[x|p]P[p|θ] (4.7)

In the M step of EM we update θ by maximizing a lower bound on logP[p|θ], making our

approach an instance of Generalized EM.

We write c(e, p) to mean the number of times that primitive e was used in program p;

c(p) =
∑

e∈D c(e, p) to mean the total number of primitives used in program p; R(p) to

mean the sequence of types input to sample in Algorithm 1. Jensen’s inequality gives a
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lower bound on the likelihood:

∑
x

E
Qx

[logP[p|θ]] =

∑
e∈D

log θe
∑
x

E [c(e, px)]−
∑
τ

E

[∑
x

c(τ, px)

]
log

∑
e:τ ′∈D

unify(τ,τ ′)

θe

=
∑
e

C(e) log θe − β
∑
τ

E [
∑

x c(τ, px)]

β
log

∑
e:τ ′∈D

unify(τ,τ ′)

θe

≥
∑
e

C(e) log θe − β log
∑
τ

E [
∑

x c(τ, px)]

β

∑
e:τ ′∈D

unify(τ,τ ′)

θe

=
∑
e

C(e) log θe − β log
∑
τ

R(τ)

β

∑
e:τ ′∈D

unify(τ,τ ′)

θe

where we have defined

C(e) ≜
∑
x

E [c(e, px)]

R(τ) ≜ E

[∑
x

c(τ, px)

]

β ≜
∑
τ

E

[∑
x

c(τ, px)

]

Crucially it was defining β that lets us use Jensen’s inequality. Recalling that earlier we

chose the prior P(θ) ≜ Dir(α), we have the following lower bound on M-step objective:

∑
e

(C(e) + α) log θe − β log
∑
τ

R(τ)

β

∑
e:τ ′∈D

unify(τ,τ ′)

θe (4.8)

Differentiate with respect to θe, where e : τ , and set to zero to obtain:

C(e) + α

θe
∝

∑
τ ′

1
[
unify(τ, τ ′)

]
R(τ ′) (4.9)

θe ∝
C(e) + α∑

τ ′ 1 [unify(τ, τ ′)]R(τ ′)
(4.10)

The above is our estimator for θe. Despite the convoluted derivation, the above estimator
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has an intuitive interpretation. The quantity C(e) is the expected number of times that

we used e. The quantity
∑

τ ′ 1 [unify(τ, τ ′)]R(τ ′) is the expected number of times that

we could have used e. The hyperparameter α acts as pseudocounts that are added to the

number of times that we used each primitive, and are not added to the number of times

that we could have used each primitive.

We are only maximizing a lower bound on the log posterior. This lower bound is tight

whenever all of the types of the expressions in the DSL are not polymorphic, in which case

our DSL is equivalent to a PCFG and this estimator is equivalent to the inside/outside al-

gorithm. Polymorphism introduces context-sensitivity to the DSL, and exactly maximizing

the likelihood with respect to θ becomes intractable, so for domains with polymorphic types

we use this estimator.

Implementing DreamCoder

Algorithm 3 describes how we combine program search, recognition model training, and

DSL induction. We note the following implementation details:

1. We perform a wake cycle before each of the sleep cycles.

2. On the first iteration, we do not train the recognition model on samples from the

generative model because a generative model has not yet been learned – we instead

train the network to only maximize LAE.

3. Because the frontiers can grow very large, we only keep around the top 104 programs

p in each frontier Fx with the highest likelihood P[x, p| D, θ].

4. During both DSL induction and neural net training, we calculate Equation 4.3 and

LRM by only summing over the top K programs in Fx as measured by P[x, p| D, θ] –

we found that K = 2 sufficed.

5. For added robustness, we enumerate programs from both the generative model and

the recognition model.
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Algorithm 3 The DreamCoder Algorithm
Input: Initial DSL D, set of tasks X, iterations I
Hyperparameters: Maximum frontier size F
Output: DSL D, weight vector θ, recognition model q(·)
Initialize θ ← uniform
for i = 1 to I do
Fθ
x ← {p|p ∈ enum(D, θ, F ) if P[x|p] > 0} (Wake)

q ← train recognition model, maximizing LRM (Sleep-R)
Fq

x ← {p|p ∈ enum(D, q(x), F ) if P[x|p] > 0} (Wake)
D, θ ←induceDSL({Fθ

x ∪ Fq
x}x∈X) (Sleep-G)

end for
return D, θ, q

4.6.4 Experiments with DreamCoder

We apply DreamCoder to two sequence-processing domains: List functions and Text

editing. For both of these domains we initially provide the system with a generic set of

sequence processing primitives: foldr, unfold, if, map, length, index, =, +, -, 0, 1, cons,

car, cdr, nil, and is-nil.

We also apply DreamCoder to Symbolic regression problems based on visual input.

For this domain, we initially provide the system with three primitives: +, *, ÷, and real.

List functions

Synthesizing programs that manipulate data structures is a widely studied problem in the

programming languages community [Feser et al., 2015]. We consider this problem within

the context of learning functions that manipulate lists, and which also perform arithmetic

operations upon lists of numbers.

We created 236 human-interpretable list manipulation tasks, each with 15 input/output

Name Input Output

repeat-2 [7 0] [7 0 7 0]
drop-3 [0 3 8 6 4] [6 4]
rotate-2 [8 14 1 9] [1 9 8 14]
count-head-in-tail [1 2 1 1 3] 2
keep-mod-5 [5 9 14 6 3 0] [5 0]
product [7 1 6 2] 84

Figure 4-15: Some tasks in our list function domain. See the supplement
for the complete data set.
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examples, some of which are shown in Figure 4-15. Our data set is interesting in three

major ways: many of the tasks require complex solutions; the tasks were not generated

from some latent DSL, and the agent must learn to solve these complicated problems from

only 236 tasks. Our data set assumes arithmetic operations as well as sequence operations,

so we additionally provide our system with the following arithmetic primitives: mod, *, >,

is-square, is-prime.

We evaluated DreamCoder on random 50/50 test/train split. Interestingly, we found

that the recognition model provided little benefit for the training tasks. However, it yielded

faster search times on held out tasks, allowing more tasks to be solved before timing out.

The system composed 38 new subroutines, yielding a more expressive DSL more closely

matching the domain (left of Figure 4-12, right of Figure 4-14). See the supplement for a

complete list of DSL primitives discovered by DreamCoder.

Text editing

Synthesizing programs that edit text is a classic problem in the programming languages and

AI literatures [Lau, 2001; Menon et al., 2013], and algorithms that learn text editing pro-

grams ship in Microsoft Excel [Gulwani, 2011]. This prior work presumes a hand-engineered

DSL. We show DreamCoder can instead start out with generic sequence manipulation

primitives and recover many of the higher-level building blocks that have made these other

text editing systems successful.

Because our enumerative search procedure cannot generate string constants, we instead

enumerate programs with string-valued parameters. For example, to learn a program that

prepends “Dr.”, we enumerate (f3string s) – where f3 is the learned appending primitive

defined in Figure 4-12 — and then define P[x|p] by approximately marginalizing out the

string parameters via a simple dynamic program. When we analyze Symbolic regression, we

will use a similar trick to synthesize programs containing real numbers, but using gradient

descent instead of dynamic programming.

We trained our system on a corpus of 109 automatically generated text editing tasks,

with 4 input/output examples each. After three iterations, it assembles a DSL containing

a dozen new functions (center of Figure 4-12) that let it solve all of the training tasks. But,

how well does the learned DSL generalized to real text-editing scenarios? We tested, but did

not train, on the 108 text editing problems from the SyGuS program synthesis competition
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[Alur et al., 2016]. Before any learning, DreamCoder solves 3.7% of the problems with

an average search time of 235 seconds. After learning, it solves 74.1%, and does so much

faster, solving them in an average of 29 seconds. As of the 2017 SyGuS competition, the

best-performing algorithm solves 79.6% of the problems. But, SyGuS comes with a different

hand-engineered DSL for each text editing problem.25 Here we learned a single DSL that

applied generically to all of the tasks, and perform comparably to the best prior work.

Symbolic regression

We apply DreamCoder to symbolic regression problems. Here, the agent observes points

along the curve of a function, and must write a program that fits those points. We initially

equip our learner with addition, multiplication, and division, and task it with solving 100

symbolic regression problems, each either a polynomial of degree 1–4 or a rational func-

tion. The recognition model is a convolutional network that observes an image of the target

function’s graph (Figure 4-16) — visually, different kinds of polynomials and rational func-

tions produce different kinds of graphs, and so the recognition model can learn to look at a

graph and predict what kind of function best explains it. A key difficulty, however, is that

these problems are best solved with programs containing real numbers. Our solution to

this difficulty is to enumerate programs with real-valued parameters, and then fit those pa-

rameters by automatically differentiating through the programs the system writes and use

gradient descent to fit the parameters. We define the likelihood model, P[x|p], by assuming

a Gaussian noise model for the input/output examples, and penalize the use of real-valued

parameters using the BIC.

Figure 4-16: Recognition model input for symbolic regression. DSL learns
subroutines for polynomials (top row) and rational functions (bottom row)
while the recognition model jointly learns to look at a graph of the function
(above) and predict which of those subroutines best explains the observation.

25 SyGuS text editing problems also pre-specify the set of allowed string constants for each task. For these
experiments, our system did not use this assistance.
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DreamCoder learns a DSL containing 13 new functions, most of which are templates

for polynomials of different orders or ratios of polynomials. It also learns to find programs

that minimize the number of continuous degrees of freedom. For example, it learns to

represent linear functions with the program (* real (+ x real)), which has two continuous

degrees of freedom (from each use of the real primitive), and represents quartic functions

using the invented DSL primitive f4 in the rightmost column of Figure 4-12 which has five

continuous parameters. This phenomenon arises from our Bayesian framing — both the

implicit bias towards shorter programs and the likelihood model’s BIC penalty.

Quantitative results

We compare with ablations of our model on held out tasks. The purpose of this ablation

study is both to examine the role of each component of DreamCoder, as well as to compare

with prior approaches in the literature: a head-to-head comparison of program synthesizers

is complicated by the fact that each system, including ours, makes idiosyncratic assumptions

about the space of programs and the statement of tasks. Nevertheless, much prior work

can be modeled within our setup.

Ours No NN SE NPS PCFG Enum

List Functions

% solved 79% ∗ 76% 71% 35% 62% 37%
Solve time 4.1s 5.8s 10.6s 34.7s 43.4s 20.2s

Text Editing

% solved 74% 43% 30% 33% 0% 4%
Solve time 29s 65s 38s 80s – 235s

Symbolic Regression

% solved 84% 75% 62% 38% 38% 37%
Solve time 24s 40s 28s 31s 55s 29s

Figure 4-17: Percentage of held-out test tasks solved. Solve time: aver-
aged over solved tasks. ( ∗: This particular experiment was done without
Helmhotlz-style sampling for training the recognition model.)

We compare against baselines in Figure 4-17 with the following ablations:

No NN lesions the recognition model.

SE lesions the recognition model and restricts the DSL learning algorithm to only add
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Figure 4-18: Learning curves for DreamCoder both with (in orange) and
without (in teal) the recognition model. Solid lines: percentage of held-out
testing tasks solved; dashed lines: average solve time.

SubExpressions26 of programs in the frontiers to the DSL. This is how most prior approaches

have learned libraries of functions [Dechter et al., 2013; Liang et al., 2010; Lin et al., 2014].

NPS legions DSL induction, instead learning the recognition model from samples drawn

from the fixed DSL. We call this NPS (Neural Program Synthesis) because this is closest

to how DeepCoder [Balog et al., 2017] is trained.

PCFG, which lesions the recognition model and DSL induction, but instead learns the

parameters θ of the DSL without learning any DSL structure.

Enum, which enumerates a frontier without any learning — equivalently, our first search

step.

For each domain, we are interested both in how many tasks the agent can solve and how

quickly it can find those solutions. Figure 4-17 compares our model against these alter-

natives. We consistently improve on the baselines, and find that lesioning the recognition

model slows down the convergence of the algorithm, taking more iterations to reach a given

number of tasks solved as shown in Figure 4-18. This supports a view of the recognition

model as a way of amortizing the cost of search.

4.6.5 DreamCoder: conclusion and future work

We contribute an algorithm, DreamCoder, that learns to program by bootstrapping a

DSL with new domain-specific primitives that the algorithm itself discovers, together with

a neural recognition model that learns how to efficiently deploy the DSL on new tasks.

We believe this integration of top-down symbolic representations and bottom-up neural

networks — both of them learned — helps make program induction systems more generally

26 Our approach does not simply extract subexpressions, it extracts fragments which can introduce new
variable bindings as illustrated in Figure 4-14.
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useful for AI. Many directions remain open.

Two immediate goals are to integrate more sophisticated neural recognition models

Devlin et al. [2017b] and program synthesizers Solar-Lezama [2008], which may improve

performance in some domains over the generic methods used here. We are in the process of

applying our algorithm to learning more sophisticated generative models than the program-

ming domains explored here. Another direction is to explore DSL meta-learning: can we

find a single universal primitive set that could effectively bootstrap DSLs for new domains,

including the three domains considered, but also many others?
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4.7 Domain-general learning

4.7.1 Introduction

Machine learning typically becomes less effective as a subject domain is broadened. Hu-

mans, on the other hand, are good at learning in arbitrarily broad domains, and exhibit

the ability to specialize in many domains without facing critical consequences from working

at such large scales. We hypothesize that this ability emerges, in part, from automatically

structured knowledge, where local relations between knowledge artifacts correspond to con-

textual relevance. We introduce the construction and utilization of this knowledge structure

as contextual learning, and consider the problem of implementing a contextual learner. In

this section, we propose a solution to this problem with a framework, ContextNet, for

automatic learning at various scales of generality inspired by patterns found in social wealth,

natural languages, protein interactions, and many other natural phenomena. This frame-

work implements a knowledge abstraction, so many existing machine learning algorithms

can be augmented to interface with it allowing knowledge to be automatically structured

behind-the-scenes. We experimentally verified our hypothesis by applying our framework to

a program induction algorithm tasked with string transformation problems, and by demon-

strating the enhanced ability for the program inductor to learn and solve complex problems

in a broad domain when augmented to utilize our framework.

Consider a mathematician attempting to prove a theorem. In order to come up with the

proof, the mathematician needs to utilize and build on top of theorems that already exist.

However, good mathematicians don’t consider using every single theorem that they know

— they instead focus their efforts on a handful of theorems they expect to be relevant. This

context makes searching for a proof tractable. Despite knowing thousands of theorems, a

mathematician might focus on only a dozen that seem relevant to the task at hand. Upon

successfully proving the theorem, the mathematician will add it to her tool belt, utilizing

it whenever a relevant circumstance arises. This example illustrates contextual learning —

learning that is conditioned on a relevant subset of knowledge called the context. Learn-

ing mechanisms that are compositional — which both consume and construct knowledge,

allowing for rapid acquisition and generalization of knowledge when confronted with new

complex tasks [Lake et al., 2017] — may be adapted to become contextual. We accomplish

this by imposing a hierarchical model over the learner, which learns a latent distribution
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over domains so that, given a domain which is motivated by the environment, relevant

knowledge artifacts to be readily available while setting others further apart.

Our approach is motivated by the observation that many compositional learners scale

poorly to broad domains. We propose an answer to this challenge of enabling compositional

learning mechanisms to become scalable contextual learners by designing a knowledge ab-

straction that provides an interface for learning mechanisms while automatically structuring

knowledge behind-the-scenes. Our solution is general enough to act as a unified framework

on which distinct mechanisms can share knowledge and learn in tandem, so we refer to it

as a component of cognitive architecture.

To contextualize knowledge in an abstract manner, we develop a component of cogni-

tive architecture called the ContextNet framework. Knowledge is represented as distinct

artifacts of information and their relations in the structure of a connected network. The

network is constructed by preferential “least effort” attachment [Barabási and Albert, 1999;

i Cancho and Solé, 2003], where a new knowledge artifact joins the network with relations

to the contextual knowledge from which it was learned. This network is scale-free — it

conforms to a mathematical pattern similar to that of Zipf’s Law and Pareto distribu-

tions [Zipf, 1949; Barabási et al., 2016], where the degrees of connectivity for nodes in the

network follow a class of power law distributions — a design which inherently encodes a

metric of utility in its structure and is prevalent in many natural systems. The resulting

system enables automatic contextualization of any learned knowledge, provides effective

compositionality for learning mechanisms which rely on knowledge artifacts, and supports

multi-mechanism learning with a unified context.

We apply this system to a compositional program inductor tasked with learning string

transformations. Our results show that our approach to automatically structuring knowl-

edge allows us to achieve rapid learning of rich models without sacrificing ability to scale

to broad domains.

4.7.2 Related work

In the discipline of artificial intelligence, much effort is placed on designing accurate learn-

ing mechanisms. These learning mechanisms are either designed for a particular domain,

or designed to specialize given consistent domain-specific input. Special-purpose learning

mechanisms include visual object recognition systems based on the human visual cortex
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[Serre et al., 2007], handwritten character identification and generation [Lake et al., 2015],

visual feature modification of images [Kulkarni et al., 2015], sound texture perception and

synthesis [McDermott and Simoncelli, 2011], and countless others. General-purpose learn-

ing mechanisms include hierarchical Bayesian methods and every mechanism discussed in

Section 4.4 Learning architectures.

Each of these mechanisms are remarkable, but lack the generality that is apparent in

human cognition. Even the general-purpose mechanisms, while capable of being applied

to many domains, are only practical when restricted to a single domain, as a specialized

instantiation of the mechanism. The need for specialization makes general-purpose mech-

anisms unappealing in practice, because a special-purpose mechanism could outperform

it. This stems, in part, from a problem of knowledge, for which learning mechanisms have

some internal representation (e.g. enumeration internally represents primitives and a search

procedure). Those representations are mechanism-specific, and are generally used without

hierarchy. Making all knowledge flat in this manner yields systems that only perform well

when confined to a single domain and flawed as a model of cognition due to the reduced

capability of both handling very complex problems and specializing in multiple domains.

Theories for cognitive architecture have pursued solving these problems. ACT* [An-

derson, 1983] is a system which utilizes memory according to a degree of activation, where

activation spreads to favor information most related to the immediate context. ACT* relates

items of memory with a matrix pairing the strength of connection between any two items,

which restricts memory capacity with a flat representation of knowledge and is therefore

lacking in the same vein as the mechanisms mentioned above. Soar [Newell, 1994] is another

system of cognitive architecture which traverses memory by pattern-matching stored pro-

duction rules. Soar has unstructured sets of memory and learns new production rules with

implicit generalization about the context it informs. Soar does not have implicit relation-

ships between items of knowledge like ACT* — it has limited explicit relationships about

context as a hierarchical data structure of subgoals, problem spaces, states, and operators.

Soar relies on generating new production rules efficiently to reduce the complexity of prob-

lem solving. Hierarchical models such as those discussed in Section 4.5 Bayesian program

learning provide a key insight which we leverage towards solving these problems, but it

must be noted that they are not typically used in this way: their application has found

itself in domain-specific contexts, where there is a particular class of learning problems that
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are modeled within a single inferred distribution. We extend this traditional approach by

having the single inferred distribution arise from a sophisticated mixture model determined

by context.

Preferential “least-effort” attachment and resulting power-law distributions have been

reported heavily over the last century, from urn models and Yule processes describing the

statistics of the evolution of simple mathematical systems, to Zipf’s Law describing patterns

in social wealth and natural language, to the Matthew effect describing analogous patterns

in psychosocial processes, to the emergence of scale-free networks and its presence in protein

interactions, linguistics, citations, and many other systems [Yule et al., 1925; Zipf, 1949;

Merton, 1968; Barabási and Albert, 1999; Jeong et al., 2001; i Cancho and Solé, 2001; Price,

1965; Clauset et al., 2009].

We model non-flat collections of knowledge artifacts using a scale-free network based on

intuitive traits of cognition:

• Growth, the learning and discovery of new knowledge artifacts expanding a knowledge-

base.

• Least-effort attachment, the construction of relations between a new knowledge artifact

and its antecedents. These relations are not random, but instead associate according

to relevance.

Presence of these two traits in systems have been shown effective in yielding scale-free

networks. While the flat representations described earlier in this section yield an average

graph distance of ⟨d⟩ = 1 (corresponding to a fully-connected graph), scale-free networks

yield an average distance of ⟨d⟩ ∼ lg lgN for network size N . Even with massive network

sizes it’s still easy to travel from one point of the network to another. The lack of “scale”

of the network refers to the variety of generally-useful (high degree) and highly-specialized

(low degree) items within the same network, a feature which inherently encodes a metric of

utility in the network structure.

The goal of ContextNet is to augment learning mechanisms around contextual knowl-

edge in a manner that reduces the intractability of hard problems by implicitly relating

knowledge in a non-flat structure, enabling compositionality at arbitrary scale. In terms of

the Marr-Poggio levels of analysis [Marr, 1982], ContextNet serves as a tool on the algo-

rithmic level of abstraction, not as a description of hardware-level structure — analogous
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to the World Wide Web operating at a higher level over the Internet.

4.7.3 ContextNet

ContextNet

Environment

Context

Mechanism

Learning

Figure 4-19: Schematic of the function of ContextNet. The environment
constitutes everything that the system observes from the “outside world.”
The context, derived from the ContextNet, defines all parameters for
the mechanism. When the mechanism learns something new, it passes that
information to the context which mutates the ContextNet to incorporate
that new knowledge.

The ContextNet framework illustrated in Figure 4-19 implements a knowledge ab-

straction, on par with typical non-hierarchical sets or addressed memory. We refer to a small

motivated subnet of the knowledge network as the context. We provide a simple computer

interface for interacting with knowledge where all interactions either retrieve information

related to the current context or adjust the context within the knowledge network, outlined

in Figure 4-20.

Get() {I} Yields the set of items in the active context
Explore() {I} Yields the set of items within one edge of the active context
Orient(I) Shifts context to focus on the given item
Add(I) Adds an item to the knowledge network

Figure 4-20: Methods on an instance of the knowledge network.

A knowledge artifact I is a structure containing a unique identifier, a symbolic tag

denoting which mechanism can understand the item’s content, and the arbitrary content

itself. Only the Add(I) and Orient(I) methods have the potential to augment the active

context. The Add(I) method automatically adds a new item of knowledge to the network,

and adjusts the context to include the new item, illustrated in Figure 4-21.

The context itself is sized according to a pre-determined minimum size Kmin and the
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Figure 4-21: The first pane shows a knowledge network, and a shaded
region representing the active context. The second pane shows the memory
accesses within the context leading up to the addition of a new knowledge
artifact. The third pane shows the new knowledge network, with the ad-
ditional knowledge artifact nondeterministically attached according to the
distribution of memory accesses.

maximum degree of a node in a scale-free network based on network size N , with degree

exponent γ satisfying 2 < γ < 3:

kmax ∼ N
1

γ−1

K = max(Kmin, kmax)

We equate the context size K to kmax wherever possible in order to support the scale-free

property. When we generate a new context after calls to either Orient(I) or Add(I),

we use a growth procedure as follows: we first uniformly sample γ to probabilistically

determine a context size K and initialize the context to the selected node. Then we add the

selected node’s neighbors to the context in order preferring the higher-degree nodes, select

the neighbor with the highest recent access count, and repeat until we reach size K. This

process adds relevant nodes while preferring to generalize.

In order to enable the emergence of the scale-free property, the automatic attachment via

Add(I) follows a least-effort procedure where the new node’s connections are determined

using popularity-based probabilistic subset selection. The selection technique we implement

is equivalent to a non-initial iteration of the Indian Buffet Process (IBP) with parameter

α = 0 [Griffiths and Ghahramani, 2011]. For every node Ij ∈ {Ii}ki=1 in the context, we

have mj , a count of accesses to Ij since the last context-switch. Additionally, we define

M =
∑k

i=1mi as the total count of knowledge artifact accesses since the last context-switch.

The new node attaches to node Ij with probability proportional to its popularity, according
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to Bernoulli
(mj

M

)
. IBP doesn’t guarantee non-empty set, so if no connections are made

for the new node, a single connection is forced using an iteration of the Chinese Restaurant

Process (CRP) with parameter α = 0 and an initial configuration of k tables associated with

nodes in the context where the occupancy of each table is the count of memory accesses to

its corresponding node. This yields the same probability of selecting a node as the IBP, but

guarantees exactly one connection.

While this attachment procedure follows a least-effort scheme, emergent properties of

the network (such as the degree exponent γ) are ultimately determined by how a learning

mechanism interacts with knowledge, and no theoretical guarantee of the scale-free property

can be made. A guarantee of the scale-free property typically comes from attachments

being made to nodes according to their degree of connectivity. This is not anticipated to

be problematic for learning mechanisms which interact with knowledge artifacts according

to their utility, because the tasks that a mechanism faces should tend to utilize certain

concepts more than others, naturally resulting in memory accesses that are proportional to

their high utility and thus correlated with high degree of connectivity in the network.

It follows from this specification that the requirements of a learning mechanism in order

to utilize ContextNet effectively are as follows:

1. The mechanism must be able to learn a number of knowledge artifacts, which consist

of information that is technically independent of other artifacts. Technical indepen-

dence here refers to the mechanism’s capability of utilizing an artifact without needing

any other particular artifact.

2. The mechanism must have the capacity to consume knowledge artifacts, leveraging

them to learn new richer models.

3. The mechanism must have a quantifiable notion of usage of any particular knowledge

artifact in its context.

The first two requirements describe a variant of compositional capability. There are reasons

to break away from these requirements without changing the specification of ContextNet,

which are discussed in Section 4.7.5 ContextNet: conclusion and future work.

Our implementation of ContextNet is available at https://github.com/lucasem/

context.
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4.7.4 Experiment: ContextNet atop EC

To experiment with ContextNet, consider the class of problems for which this system

would excel: complex domains where modular knowledge improves the efficiency of com-

pleting relevant tasks. There are many learning mechanisms which are suitable for experi-

mentation, such as inductive logic programming (ILP) systems or algorithms which perform

search on a grammar. Distinct knowledge artifacts for ILP systems could be sets of predi-

cates, and for grammar search systems they could be language artifacts which construct a

mixture model on which search is performed. In this section, we apply ContextNet to

a problem of learning effective grammars. The grammar learner consumes an initial gram-

mar and solves tasks to construct a more effective grammar, yielding a learning mechanism

which fits the requirements we enumerated above. We augment the grammar learner to

utilize ContextNet and task it with solving string transformation tasks. We demonstrate

that ContextNet improves the effectiveness of the baseline grammar learner.

Materials

Learning mechanism

We augment the EC algorithm27 [Dechter et al., 2013], a grammar learner build atop com-

binatory logic (c.f. Section 3.4 Combinatory logic). The augmentation defines the grammar

based on learned language artifacts stored in the context, rather than artifacts stored in

a small bounded set constructed dynamically on every task set28. We use ContextNet

iteratively, referring to each iteration as a phase and the complete ordered set of phases as

the curriculum. Within each phase lies a set of tasks used with a number of iterations of

the EC algorithm. The augmented algorithm interacts with the knowledge network at the

beginning and end of each phase.

The initial grammar employed at the beginning of each phase is defined using the set of

combinators in the current context:

C :=
∪

Get() =
k∪

i=1

Ii

27 The details of the EC algorithm are not important here. For more information on the EC algorithm,
consult the original publication [Dechter et al., 2013] or our extension of it that features amortized inference, a
different program representation, and more sophisticated compression that is detailed in Section 4.6 Language
bootstrapping.

28 Without augmentation, the EC algorithm statically maintains a set of primitives and dynamically
introduces new ones as a function of the tasks at hand.
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At the end of each phase, we must determine whether the context should be adjusted and

whether to add a new knowledge artifact. We refer to the new set of combinators constructed

by the grammar learner as C∗.

Consider the set of combinators beyond the context:

C ′ :=
∪

Explore()

If the most probable combinator ci in C∗ is also in C ′ (in other words, the grammar learner’s

preferred primitive is defined within one edge of the current context), we adjust the context

according to the knowledge artifact which contains ci:

∃I. I ∈ Explore() ∧ ci ∈ I =⇒ Orient(I)

We subsequently recompute C ′ with the new state of the knowledge network. We check the

P most probable combinators in C∗, referred to as C(P ) ⊆ C∗, for presence in C ′, and add

a new knowledge artifact with every combinator not in C ′:

(
I := C(P ) \ C ′

)
∧ |I| > 0 =⇒ Add(I)

The resulting system, parameterized by P , is such that the current context may appro-

priately be identified as domain-specific knowledge, where a knowledge artifact is a set of

combinators which are used as primitives for a grammar defined on the context. Figure 4-22

illustrates a knowledge network that arises from this system.

Figure 4-22: A knowledge network after learning programs with the EC
algorithm. For demonstration purposes, each node displays the id corre-
sponding to the phase at which the artifact was learned, and an example of
a task from that phase. Actual knowledge artifacts contain learned combi-
nators, not the content shown here. Older artifacts, towards the top, have
high connectivity because they contain concepts that are useful.
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Task domain

We test the augmented EC algorithm in the domain of string transformation [Gulwani,

2011; Lin et al., 2014], chosen because it has potential for common underlying structure

between complex tasks. Microsoft Excel’s FlashFill implements program induction for string

transformations, but has not been demonstrated to utilize composition over previously

learned programs. To handle this task domain, we provide our augmented EC algorithm

with the primitives shown in Figure 4-23. Examples of string transformation tasks are

shown in Figure 4-24.

<ascii chars>... char

zero int

empty str

string of char char → str

string of int int → str

upper str → str

lower str → str

capitalize str → str

concat on spaces str → str

replace substr first str → str → str

replace substr all str → str → str

incr int → int

decr int → int

word count str → int

char count str → int

find char char → str → int

substr int → int → str → str

replace str → int → int → str → str

nth int → str → str

fnth (str → str) → int → str → str

feach (str → str) → str → str

is str → str → bool

filter words (str → bool) → str → str

Figure 4-23: Primitives for string transformation given to the EC algo-
rithm, and their associated types. See Section 3.4.1 Polymorphic typed
combinatory logic for an explanation of the syntax used here for types.

The string transformation tasks were first separated into three distinct subdomains,

each of which contained tasks of varying complexity that respectively culminated in tasks

5, 15, and 20 shown in Figure 4-24. We then separated the tasks within each subdomain

into smaller sets of tasks which would be supplied to the augmented EC algorithm in a

single phase. We refer to these as phasic task sets. The structure of these phasic task sets

is much like a school curriculum — they start simple and get more complex as foundational

concepts are learned. See Figure 4-25 for an example of a phasic task set and solutions to

its tasks.
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Task Subdomain Input Output
1 1,3 no spaces nospaces
2 1 Marin Lorentzen M L
3 1 Marin Lorentzen ML
4 1 Words that start With Caps Words With Caps
5 1 Structure and Interpretation of Computer Programs SICP
6 2,3 ruby r
7 2,3 where is.the dot 8
8 2 where is<the angle 8
9 2,3 discard after.dot discard after
10 2 drop first two chars op first two chars
11 2 before angle<discard discard
12 2 discard>after angle discard
13 2 #include <os.h> os.h
14 2 #include <os.h> os
15 2 #include <os.h> OS
16 3 discard@after at discard
17 3 ruby.clinton ruby clinton
18 3 ruby clinton Ruby Clinton
19 3 ruby.clinton Ruby Clinton
20 3 ruby.clinton@mit.edu Ruby Clinton

Figure 4-24: Complete list of string transformation tasks that we teach
the EC algorithm to solve compositionally. Not all subdomains have more
than one phasic task set. Some tasks are repeated to enable non-contextual
learning to successfully complete all phasic task sets.

Task Solution
1 replace-substr-all empty (string-of-char <space>)
2 feach (substr zero (incr zero))
3 λa.replace-substr-all empty (string-of-char <space>)

(feach (substr zero (incr zero)) a)
4 filter-words (λa.is a (cap a))
5 λa.replace-substr-all empty (string-of-char <space>)

(feach (substr zero (incr zero))
(filter-words (λb.is b (cap b)) a))

Figure 4-25: Solutions for a particular phasic task set made by both the
specialized and contextual grammars, displayed in lambda calculus.

Method

We compare primitive, specialized, and contextual grammars in terms of total clock-time

performance, EC-iteration clock-time performance, and solution likelihood. Each task has

multiple examples, where between one and two examples are used for training while any

remaining examples are used for cross-validation. If cross-validation dictates that a solution

is a false positive, or if no solution was successfully enumerated, the task is marked as a

failure.

For the primitive grammar results, we perform one iteration of the EC algorithm on

each phasic task set. This demonstrates the strength of our set of primitives with minimal
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composition. We perform two analyses with specialized grammars: per-phase and full-

domain. For the per-phase specialized grammar, we independently perform many iterations

of the EC algorithm on each phasic task set. This will tailor the learned grammar to the

tasks at hand, while not relying on learned grammars from any other phasic task set. For

the full-domain specialized grammar, we pool together every task into one massive task set,

and run many iterations of the EC algorithm on the that task set. This will demonstrate

that the task domain is broad and yields ineffective learning when attempted at full scale.

For the contextual grammar, we first learn according to the curriculum, then reiterate the

curriculum and use results from the reiteration. We reiterate because we are interested in the

contextual grammar’s results after it has already learned the material and automatically

formed a ContextNet. In other words, we are interested in the recall of contextual

knowledge. This will yield a large — but not comprehensive — grammar corresponding

to whatever artifacts are in the ContextNet’s context during the particular reiterated

phase.

The total clock-time measurement is simply the time spent on each phase. The EC-

iteration clock-time measurement is the time it took the final iteration of the EC algorithm

to enumerate particular solutions for each task, which demonstrates the expressiveness of the

grammar that the EC algorithm ultimately utilized. The likelihood measurement effectively

represents the probability of an expression given the grammar in the final iteration of the EC

algorithm. All results use the same parameters for the EC algorithm except for the number

of iterations: The primitive grammar uses only one iteration, the specialized grammars use

five iterations, and the contextual grammar uses five iterations when initially learning from

the curriculum and only one iteration during recall when we take measurements.

Results

To demonstrate that ContextNet provides automatic compositionality, we anticipate the

contextual grammar to out-perform all other grammars in terms of total speed and to

perform at least as well as all other grammars in the solve speeds measured during the final

iteration of the EC algorithm, and we anticipate the solution likelihoods with the contextual

grammar to be about the same as with per-phase specialized grammar. The faster total

speed is expected because the contextual grammar is running only one iteration of the

EC algorithm — we can get away with this because the contextual grammar should start
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each phase with an expressive grammar already prepared, whereas the specialized grammars

must spend more iterations to learn such a grammar. The at-least-as-fast speeds in the final

iteration are expected because the contextual grammar would have, during a previous phase,

already performed the EC algorithm on the same tasks for the same number of iterations

as the per-phase specialized grammar. This does not imply that such measurements are

meaningless, because the contextual grammar must rely on an expressive contexts that do

not contain too many irrelevant combinators which would increase the enumeration time

for EC. The similar solution likelihood is expected because the contextual grammar should

find the same solutions as the per-phase specialized grammar. Additionally, we anticipate

the full-domain specialized grammar to perform poorly in all measurements because the

domain is sufficiently broad to deem a single unified grammar poorly expressive for many

tasks. Our results are consistent with these expectations.
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Figure 4-26: Tasks are automatically ordered based on performance in
each metric. (a) The speed at which phases were completed, shown for each
task. (b) The speed at which tasks were solved in the final iteration of the
EC algorithm. (c) The log likelihood of solutions for tasks conditioned on
the grammar.

The comparison of phase completion speeds is shown in Figure 4-26a. Because the

primitive and contextual grammars used only one iteration of the EC algorithm, they are

much faster than either of the specialized grammars.
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The comparison of solution speeds in the final iteration of the EC algorithm is shown

in Figure 4-26b. The performance of the contextual grammar is almost always superior

to every other grammar. The shortcomings of the primitive grammar are due to its lack

of compositional learning. Though it can solve every task we provided, the per-phase

specialized grammar occasionally lacks the performance of the contextual grammar because

it does not also utilize learned grammars from previous phases that are contextually relevant.

The full-domain specialized grammar is unable to solve every task due to the large number

of tasks it faced, especially given the constraints on the search depth and the number of

iterations of the EC algorithm.

The comparison of solution likelihoods is shown in Figure 4-26c. The per-phase spe-

cialized and contextual grammars perform very similarly due to the similarities in their

respective learned combinators. The full-domain specialized grammar generally performed

worse than either the per-phase specialized or contextual grammars, though it is superior

to the primitive grammar with few exceptions.

4.7.5 ContextNet: conclusion and future work

We introduce the problem of contextual learning, and observe the costly oversight of the

lack of attention to knowledge structure in many existing learning mechanisms. We pro-

pose a solution that enables compositional learners to become scalable contextual learners.

Our solution features a novel method of automatically structuring knowledge inspired by

patterns found in natural processes, and is designed to interface well with existing learn-

ing mechanisms. This makes it an ideal candidate for utilization with any mechanisms

that satisfy the requirements described in Section 4.7.3 ContextNet, whether to help

scale a mechanism to broad domains or to use as a unified learning framework for many

mechanisms. We applied ContextNet to one such mechanism, the EC algorithm, and

demonstrated that ContextNet is effective at enhancing learning in broader domains.

The ContextNet system as experimented on in this paper is missing an important

element of context localization. We believe a major step in improving ContextNet’s effec-

tiveness is to introduce an artificial neural network with an online learning algorithm which

maps perceptual input to items in the context. Such an approach must iteratively expand

its memory as new knowledge artifacts are learned by other mechanisms, and make calls to

Orient(I) whenever deemed effective. This would introduce the green lines illustrated in
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the updated ContextNet schematic of Figure 4-27.

ContextNet

Environment

Context

Learners. . . Neural Network . . .Actors

Figure 4-27: Schematic of the function of ContextNet with desired
future features, adopted from Figure 4-19. Green lines indicate connections
for a neural network tasked with context localization. The “mechanism”
is generalized to any number of learners, indicated with blue lines. Actors
which interact with the environment are indicated with orange lines.

The ContextNet system can be utilized in many different ways. By connecting many

learning mechanisms to the same knowledge network, interoperability between distinct

learning mechanisms such as for vision and sound can result in proximal — and perhaps even

shared — knowledge artifacts representing the same multi-modal symbol being perceived by

different mechanisms (see the blue lines in Figure 4-27). Because learning mechanisms may

treat knowledge artifacts as first-class objects that can be observed or created, the mech-

anisms do not necessarily have to be restricted to learners — the introduction of actors

as mechanisms would yield a production system conditioned on contextual knowledge and

immediate perceptional information (see the orange lines in Figure 4-27). Supplemented

with support for direct communication between mechanisms, collections of mechanisms can

be structured and would be more fittingly referred to as agents [Minsky, 1988]. The Con-

textNet system, in conjunction with these agents, should be tested as a model of cognitive

architecture.
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Chapter 5

Towards Formalized Conceptual

Role

5.1 Introduction

Conceptual role semantics (CRS) is a philosophical framework that aims to answer many of

the questions posed in Chapter 2 Computational Framing of Representation and Learning

[Field, 1977; Harman et al., 1982; Block, 1986]. The approach of CRS accepts that represen-

tations attain meaning through their relationships to other representations. For example,

from Piantadosi [2016]:

There is nothing inherently disjunctive about your mental representation of the

mental operation OR. What distinguishes it from AND is that the two interact

differently with other mental tokens, in particular TRUE and FALSE.

This is evident in how people define terms (e.g. the reader may attempt to define “com-

putation”): by using other terms that may themselves need to be defined. The role, or

functional relevance, of a concept is effectively what defines the concept and what gives it

meaning. CRS and the theory theory of concepts (c.f. Chapter 2 Computational Fram-

ing of Representation and Learning) provide the same accounts for conceptual structure

[Brigandt, 2004]: loosely, the inferential role of concepts in CRS accords to the explanatory

capacity of intuitive theories while also providing grounds for cognitive development. The

concepts described by CRS are inherently abstract, much like intuitive theories — however,

we discuss the “grounding” of these cognitive phenomena in Section 5.4 Perception, mem-
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ory, and cognition. As mandated by theory theory, locally connected concepts1 according to

role may be coherent simply by construction of concept (and their roles). Ensuring causal

structure is a more challenging problem when adopting the perspective of CRS. This may be

mitigated within our proposal by supplanting strong immutable priors on a set of concepts

which collectively determine causation. In this chapter, we invoke CRS in a language of

thought to construct — speculatively — a computational formalism for conceptual role. In

doing so, we provide answers to the following questions posited in Chapter 2 Computational

Framing of Representation and Learning:

I. How are concepts individuated?

II. Why are concepts useful?

III. What is the representation of concepts?

IV. How does concept learning manifest?

V. By what procedures are concepts learned?

VI. To what extent is the representation of concepts learned?

VII. To what extent are learning procedures for concepts learned?

VIII. Where do concepts meet perception?

5.2 Representation and role

A computational formalism of conceptual role necessitates a concrete definition of role that

may be modeled computationally, as well as a declaration of what mental representations

should be present. We adopt the direction of Piantadosi [2016] that models of the world —

from environmental and physical phenomena to agents and their actions to abstract concepts

such as number — are effectively emulated in the mind. This emulation is carried out by

mental operators whose behavior produces an isomorphism to a real world system. With

this framing, adopting a Turing-complete computational representation for mental operators

necessarily provides this capability. In this section we discuss a high-level representation
1 Connectivity in the setting refers to the relations between concepts within some conceptual structure

or intuitive theory. Hence, local connection corresponds to some sort of domain-specific or contextual co-
relevance.
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that can be grounded in structured computation which is implementable by connectionist

networks2.

We propose that a suitable representation is a pure type system, and we remind the

reader that types are sets of values3. As we described in Section 3.7 Pure type systems,

adopting a type system permits us to declaratively express concepts without necessitating

concrete code that grounds out in some primitive language. In other words, we can express

role through type declarations, which define types or relations on types by means of

other types. Figure 3-21a illustrates conceptual role via types: we can model classes of

object like container, with instances like box or shed; if a container has distinct objects and

not something liquid, then the container is traversable; if something is traversable and its

items are orderable, then we can sort those items. While we used English words here to aid

the reader’s understanding of our example, the words themselves carry no meaning in this

context; meaning is derived from the relationships between concepts/types. Furthermore,

by working within a type system, coherence is guaranteed because nonsense values and

inconsistent behavior are not representable4.

We believe this representation may best be understood by regarding programmers as

translators (Figure 5-1). A computer programmer maintains a mental model for some

2 See Section 5 of Piantadosi [2016] for an exposition of this feat.
3 In a pure type system, there may be “higher order” types which are themselves sets of types.
4 We mean inconsistent behavior in accordance to an ascribed type. If a type itself is effectively nonsense,

but it is valid within the system, then it may be constructable. This is not problematic as CRS does not posit
that there necessarily is an objective notion of meaning. I.e., people are not harbingers of truth and may
have mental representations for concepts which have no apparent analogue in the mental representations of
other people.

λ

Figure 5-1: Programmer as translator. A programmer is tasked with trans-
lating mental models (left) into a programming language (right), and vice-
versa when interpreting foreign models.
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“Sort” takes a sequence of things which are orderable,
and gives a sequence of those things in order.

(a)

sort : Ord T ⇒ {i : List T} → {v : List T | elems(i) = elems(v)

∧ nondecreasing(v)}
(b)

Figure 5-2: Natural language and types. Both provide declarative
means of descriptive communication, and they may correspond in ob-
vious ways as illustrated here. “Sort” leverages existing concepts like
quantification (“things;” polymorphism over T ), “orderable” (Ord), “se-
quence” (List), order-independent equivalence between containers (“of
those things;” elems(i) = elems(v)), ordered sequences (“in order;”
nondecreasing(v)), and conjunction (implicit in natural language; ∧).

computational workflow and must translate this model into a programming language. Many

high-level programming languages prioritize ergonomics to make this translation process

easier. For the programmer, an entire computational workflow can be modeled using only

type declarations — without having to write any concrete code. We ask, “what is the best

programming language?” The answer is, for the purposes of cognitive science, whatever

language the programmer uses to construct mental models. The key intuition here is that

type systems serve as a framework in which programmers represent concepts. However,

these rich type systems are merely the current cutting-edge of what programming languages

provide. Perhaps in the future, natural language may be translated into formal structure

via declarative types as demonstrated in Figure 5-2.

At the beginning of this chapter, we mentioned the importance and non-triviality of

causal structure within CRS. An approach to resolve this is to introduce types that carry

causal meaning. While nature has had the opportunity to construct causal models through

natural evolution, we must reverse-engineer whatever causality is in order to supplant the

notion within our framework. The recently-developed “interventionist” account of causation

takes inspiration from causal Bayes nets: A causes B if, other things equal, an intervention

on the probability distribution associated with A yields a change in the probability distri-

bution associated with B [Woodward, 2003; Gopnik and Wellman, 2012]. In tune with our

acceptance of CRS, this supports role-based understanding: the mechanistic details of a

causal process are unnecessary for the understanding that causation is present. While the

details of the instantiation of such a causal framework in the mind are unknown to us, we
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can nonetheless adopt it in a type system as demonstrated in Figure 5-3.

Distribution = {D | · · · }
Event = {

E | ∃Env. ∃f :Env→ Distribution.

∀env:Env. (observe(env) ∈ E) ∼ f(env)

}
cause : Event→ Event→ Prop
cause a b = ∃b:Event. cause a c ∧ cause c b

∧ let JointEnv = a[Env] ∪ b[Env]in
∃perturb:JointEnv→ JointEnv.

not_identity(perturb)

∧ ∀env:JointEnv.
a[f ](perturb(env)) ̸= a[f ](env)⇒ b[f ](perturb(env)) ̸= b[f ](env)

∧ a[f ](perturb(env)) = a[f ](env)⇒ b[f ](perturb(env)) = b[f ](env)

Figure 5-3: Causation modeled in a type system. We use orange to indicate
a set of types (i.e. a set of concepts), small-caps to indicate a type (i.e. a
concept), green to indicate a type variable (i.e. a concept variable), blue to
indicate an instance variable (i.e. an inhabitant of a concept), red for pre-
sumed procedures which may be innate or defined elsewhere, and purple for
defined procedures. Square brackets indicate “indexing” into existentially
quantified variables, the details of which are beyond the scope of this work.
In words, a concept is an event if there is an environment and a function on
that environment which determines whether the concept is observed. Event
a causes event b (a proposition Prop) if there is an intermediary event c
such that a causes c and c causes b, or if there is a nontrivial perturbation
on the environment where a change to the distribution of event a implies a
change to the distribution of event b and the counterfactual, that no change
for a implies no change for b. This could be modeled differently, such as with
metrics of comparison between distributions, but our illustration suffices.
To illustrate placeholder capability for causation, one only needs
to introduce disjunctive statements to the system. For example,
“cause SomeConcept SomeOtherConcept” alone suffices to indicate another
inhabitant of “cause” without necessitating use of its abstract definition.

A seemingly profound and controversial statement is made in our computational model

of causation: that concepts may be events rather than taking an event to be a particular

object or real-world entity. We do not mean “object” in the physical sense; we instead adopt

that an object is anything which may satisfy the abstract determination of a concept. The

statement of our model is actually not such a significant claim because of an important
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feature of our representation: singleton types. A singleton type is a type with exactly one

inhabitant, or under our interpretation, a concept that refers to a particular object or real-

word entity. With singleton types, a particular entity may occupy the conceptual status of

event by representing that entity as a concept.

A collapsed type hierarchy allows for mathematical inconsistency that seems necessary

for a model of cognition: e.g. Russell’s paradox5 should be representable as well as the

paradoxical phrase, “there is no absolute truth.” These paradoxes, despite being so, carry

meaning as concepts that people have expressed, and can further provide useful tools for

critical thinking by challenging overlooked assumptions or by promoting alternative perspec-

tives. These paradoxes both rely on self-reference, which can be achieved in a type system

whether by procedural recursion at the object-level, inductive recursion at the type-level,

or by self-inhabitance between types and higher-order types. Self-inhabitance is granted by

the collapsed type hierarchy, while procedural and inductive recursion are granted without

necessitating inconsistency. Furthermore, dual factor theory [Block, 1986; Carey, 2009] is

trivially supplied by a collapsed type hierarchy — we will not get into the details of the

theory for this reason, but it is of note for cognitive scientists who question the compatibility

of the theory with our approach6.

We therefore have answers for questions I-III listed at the beginning of this chapter: (I)

we individuate concepts by their distinct computational functions7; (II) concepts are useful

by giving meaning to other concepts through conceptual role; (III) we represent concepts

by their role, as a type.

5.3 Learning and conceptual change

In this section, we discuss what constitutes learning in a type system. We appeal to pro-

gram induction (c.f. Chapter 4 Concept Learning by Design: Program Induction) for its

approaches to tackling many of the hard learning problems under our interpretation. As
5 In short, Russell’s paradox is that if we define S to be the set of all sets that don’t contain themselves,

i.e. S = {x|x ̸∈ x}, then it it follows that S ∈ S iff S ̸∈ S. In formal mathematics this is typically resolved
by the axiom of specification. In fact, the origin of types themselves was from Bertrand Russell’s efforts to
mitigate this paradox [Russell, 1903; Whitehead and Russell, 1912].

6 We believe questions regarding this compatibility and “trivial” satisfaction of dual factor theory are
clarified and answered in Section 3.7 Pure type systems and this chapter.

7 If two types, though defined differently, have the same inhabitants, then they are equivalent. In logic
and computer science terminology this is extensional equivalence, contrasted with intensional equivalence
where the definitions themselves are the basis of equivalence.
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such, our approach is compatible with theories of learning based on Bayesian models by

integration with BPL (c.f. Section 4.5 Bayesian program learning). By the end of this

section, we’ll have answered questions IV-VII listed at the beginning of this chapter: each

subsection provides some account for questions IV and V, while Section 5.3.2 Consolidation

and abstraction and Section 5.3.3 Conceptual change with discontinuity both tackle ques-

tion VI and Section 5.3.5 Inducing search procedures and probabilistic models particularly

tackles question VII.

5.3.1 Synthesis

To mentally formulate entities that bear a concept, program synthesis may be used to find

inhabitants of a type. E.g., this is to go from the abstract concept of “dog” to a particular

instance of a dog, from an entrée like “eggplant and zucchini parmesan” to a recipe for its

construction, or from the abstract concept of “sort” to a sorting procedure. The approach of

type-directed synthesis we described in Section 4.4.4 Deductive search is particularly relevant

in this setting, as the example from Figure 4-3 fits exactly with the example of sorting

described here. We further note that types need not be expressed with such intentional

rigor as in “sort;” types can be expressed using operations on sets such as intersection and

union8 or by explicitly denoting inhabitants of a type, thereby permitting synthesis problems

to be formulated by example. For example, using this scheme for type specification, a task

for repeating a sequence may have type {f :[T ]→ [T ] | f([ ]) 7→ [ ] ∧ f([1]) 7→ [1, 1]} before

a more abstract description is determined9.

Synthesis is a generative process, whether by constrained search-based methods of type-

directed program synthesis or by sampling from a probabilistic generative model. We here-

after refer to the latter as sampling from a probabilistic program, where a probabilistic

program is a probabilistic model defined by random choices in some program. Causal

structure learning has been widely observed in development and Bayesian models of that

learning have provided new insights [Griffiths and Tenenbaum, 2009; Schulz, 2012b; Gopnik

and Wellman, 2012]. Because of peoples’ ability to learn and mentally manipulate causal

structure, we believe it is important that natively probabilistic computation is accounted
8 Depending on the choice of priors, the conceptual procedures of intersection and union may be considered

either innate or learned — we need not presume of one of these cases as they are effectively created equal
within the type system.

9 The determination of a more abstract description is discussed in Section 5.3.2 Consolidation and
abstraction and Section 5.3.4 Construction of concepts.
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(a)

context : PhysicalContext
ball : PhysicalCircle
obstacle : PhysicalRectangle
goal1 : PhysicalRectangle
· · ·
context[Objects] = {ball, obstacle, . . .}
rotation obstacle = −45◦

position ball (t = 0) = (0, 3)

velocity ball (t = 0) = (0,−1/2)
position obstacle (invariant) = (0, 2)

position goal1 (invariant) = · · ·
· · ·
nearest (position ball (t =∞))

{goal1, goal2, goal3}

(b)

Figure 5-4: A physical system. The pseudocode in (b) is mostly object-
level and not type-level. These statements form constraints which determine
the nature of ball, the underspecified object. When an object for ball is
discovered by synthesis, an inhabitant for the final statement (which is not a
constraint because it lacks assignment) may be synthesized. The priors here
the implicit values that there is acceleration due to gravity on all objects and
that velocity is zero unless otherwise specified. These priors are established
as a function of perception, as discussed in Section 5.4 Perception, memory,
and cognition.

for. Sampling procedures for probabilistic programs are viable synthesis mechanisms in our

computational framing. Later in Section 5.3.5 Inducing search procedures and probabilistic

models we will show that these probabilistic models are expressible and learnable in our

framing.

Synthesis is useful for more than just the kinds of problem-solving that obviously trans-

late to finding an inhabitant of a type (as with the examples of a recipe or an algorithm).

It supplies a means for simulation, which involves finding the inhabitant of a type under

various other type constraints. A keen example is in the simulation of the dynamics of a

physical system, illustrated in Figure 5-4. The constraints here are hand written, but we

will discuss in Section 5.4 Perception, memory, and cognition how they may be constructed.

Similarly, synthesis is also useful for hallucination. Hallucination comes for free with

synthesis-based simulation for reasons we discuss in Section 5.4 Perception, memory, and

cognition.
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5.3.2 Consolidation and abstraction

There is evidence in neuroscience for the consolidation of memory and creation of abstrac-

tions during sleep [Dudai et al., 2015]. Within our framing, existing information can be

reorganized to be more efficient: program synthesis for language bootstrapping provides

“refactored” implementations which keep the same types and behavior. This kind of refac-

toring reduces software bloat10 and makes solutions to probable tasks more accessible. We

refer the reader to Section 4.6 Language bootstrapping for a deeper dive into how this

consolidation process may be computed.

Under our representation, consolidation in this form can manifest in many ways. One

variety of concept construction (which we will discuss further in Section 5.3.4 Construction

of concepts) arises from consolidation through abstraction. Such as the transformation from

concepts to an abstract consolidation illustrated in Figure 5-5.

add2 ℓ = map (λx. (plus x two)) ℓ

add3 ℓ = map (λx. (plus x three)) ℓ

(a)

add2 = addk two

add3 = addk three

addk k ℓ = map (λx. (plus x k)) ℓ

(b)

Figure 5-5: In the work of Section 4.6 Language bootstrapping, we “com-
pressed” common code in (a) by creating reusable helper functions as in (b),
making empirically relevant concepts more accessible for future learning.
We note that the arithmetic and natural numbers assumed in this example
may be learned, and we remark that as discussed earlier in this chapter, an
item like “two” can exist as both a type (i.e. concept) or as an object (i.e.
something that inhabits a concept).

Consolidation also provides a means for continuous conceptual change, where different

abstractions may be used to represent the same concept. These abstractions still express the

same concrete treatment of the concept because they are induced through the same proce-

dure (i.e. efficient abstraction) from the same episodic experiences (i.e. program segments,

whether at object-level or type-level). Hence we refer to transformations between use of

these abstractions as continuous conceptual change. The discontinuous variety is discussed

in Section 5.3.3 Conceptual change with discontinuity. The decided use of one representa-

tion (i.e. set of abstractions) over another is be discussed in Section 5.4 Perception, memory,
10 Software bloat is when many parts of a system are not useful, yielding unnecessary sophistication and

reduced performance.
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and cognition.

Search procedures and probabilistic models are consequently learnable with this ap-

proach, as will be made more clear in Section 5.3.5 Inducing search procedures and prob-

abilistic models. In particular, specific inductive or deductive search procedures may be

abstracted into general procedures which are broadly useful, or probabilistic models may

be consolidated by modeling them as conditional distributions of some more general prob-

abilistic program.

5.3.3 Conceptual change with discontinuity

A computational theory of concepts must account for the discontinuous representation trans-

formations that people encounter, both in development for concepts like “number” and

“matter/weight/density” and in adulthood as the history of science introduced concepts

like “temperature/heat” and “magnetism” [Carey, 2009]. These conceptual discontinuities

are of at least two varieties: increase in expressive power, and incommensurabilities [Kuhn,

1965; Carey, 2015]. The former comes with an apparent parent/child relation between two

conceptual structures, where the parent is less efficient than the child, but both are compa-

rable and derived from the same foundations. For example, in a digital numerical system

where addition is well-understood, two numbers may be multiplied by repeated addition

as many times as one of the multiplicands, or by the “lattice method” involving adding

the digits that arise from smaller multiplications — see illustration in Figure 5-6. Incom-

mensurability arises when conceptual structures are essentially incompatible: there is no

effective means of comparison and the new concept does not logically follow from the old

concept. These two varieties of discontinuous change are related to material we save for

Section 5.3.4 Construction of concepts, in particular corresponding to consolidation and

intensional learning for commensurable change and placeholder filling for incommensurable

change.

In our computational approach, this has an analogue to keeping some consistent behav-

ior, but changing the types — i.e. type-level refactoring (contrasted with implementation-

level refactoring in Section 5.3.2 Consolidation and abstraction). By “keeping some con-

sistent behavior,” we mean that certain roles of each conceptual structure correspond. For

example, the notion of “number” may be associated with some particular conceptual struc-

ture, and during discontinuous conceptual change that same notion of “number” still exists
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78
+78−−→ 156

+78−−→ 234

(a)

7 8
32

1
2

4
43

2

(b)

Figure 5-6: Multiplication of 78 by 3 using (a) repeated addition and (b)
the lattice method. These multiplication algorithms are commensurable as
the latter has an apparent logical construction derived from the former.

and has role similarly tied to the new conceptual structure. This effectively changes the way

the system think about things but knowledge may still transfer over to the new conceptual

structure — as will be established in Section 5.4 Perception, memory, and cognition. An ap-

parent example of discontinuous conceptual change in a type system is between incremental

numbers and digital numbers, as illustrated in Figure 5-7.

enum Nat {
Zero,

Succ(Nat),
}
let twenty : Nat = Succ(Succ(Succ(Succ(

Succ(Succ(Succ(Succ(

Succ(Succ(Succ(Succ(

Succ(Succ(Succ(Succ(

Succ(Succ(Succ(Succ(

Zero))))))))))))))))))));

(a)

enum Digit {
Zero,

One,

...,

Nine,

}
type Nat = [Digit];
let twenty : Nat = [Two, Zero];

(b)

Figure 5-7: Conceptual change as type-level refactoring from a representa-
tion of natural numbers that is (a) incremental, as in Peano arithmetic, to
(b) digital, as in the Arabic numeral system. Not shown are the correspond-
ing implementations of addition (which is more efficient in the digital system
for large numbers), number-word generation (e.g. speaking “twenty”), and
other already-established numerical operations. This code is written more
concretely in the Rust programming language because we think it is more
illustrative and expressive for this example.

Another related feature is that of thinking at different levels of abstraction. For example,

consider arrangements of flower petals, such as the one illustrated in Figure 5-8. One might

explain this natural occurrence by reasoning about optimal sunlight exposure for each petal
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Figure 5-8: Repeated phyllotactic spirals according to the Fibonacci se-
quence, a natural phenomenon demonstrated in sunflowers, pineapples, and
other plant-life. The number of petals in a flower is generally a Fibonacci
number (e.g. the lily flower has three petals, often repeated twice, and the
buttercup typically has five petals). When the petals repeat, they form two
repeated spirals (clockwise and counter-clockwise) each of which occurs a
Fibonacci number of times.

that is tolerant to over-growth in the number of petals: by spacing them evenly apart

according to an irrational number, repeated layers won’t significantly limit the sunlight

exposed to previous layers11. Alternatively, one might think of this as the result of a

generative process by which seeds travel during growth, where the travel is a function of

rotation and distance from the stem. Yet another way to think about this is by the inter-

cellular mechanics from which this travel emerges. Finally, one may think about this as a

byproduct of evolution: sure there is something useful for survival and proliferation given

by obeying such a pattern, one might imagine that these plants grew faster and procreated

faster than plants without this property, hence consuming more land and preventing the

less-biologically-competitive alternative from surviving many generations.

We have the capacity to entertain many layers of abstraction in our thought, despite

them all being of the same concept (e.g. phyllotaxis as a discriminative property, as a

generative process, as emergent from low-level biological mechanism, or as a mutation that

11 With a rational number, such as 2 or 1/2, leaves alternate on opposite sides of the stem thereby
limiting sunlight exposure for lower layers. If the leaves are grown far-enough apart, however, this exposure
is unaffected, which is also observed in nature.
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yielded evolutionary advantage). This is achieved in our system by maintaining transforma-

tions between conceptual structures where many of those structures remain useful despite

the other’s existence. A transformation may look like a function which goes from the Nat

of Figure 5-7a to the Nat of Figure 5-7b. We will look into the “usefulness” notion in Sec-

tion 5.4 Perception, memory, and cognition, as it distinguishes whether conceptual change

occurs in a backwards-compatible way (i.e. conceptual structure is maintained) versus an

incommensurable and reconstructed way (i.e. conceptual structure is replaced).

5.3.4 Construction of concepts

Where does knowledge come from? How do people imagine new ideas, whether consistent

with observation or nonsense? In this section, we provide a computational account for

constructivism under our role-based representation in attempt to aid the resolution of a

core problem in cognitive science [Piaget, 1937; Schulz, 2012a]. This process accords to type

generation in our framing, and it comes in many forms.

Consolidation, as discussed in Section 5.3.2 Consolidation and abstraction, accounts

for a variety of concept construction. By creating abstractions over existing concepts, cer-

tain generalizations may be made. For example, our DreamCoder system of Section 4.6

Language bootstrapping can discover the higher-order list function “filter” by general-

izing from solutions of particular list filtering problems.

Intentional learning is the result of combining existing concepts by association via

other concepts. For example, the concept Red-Dog can be constructed from the exist-

ing concepts of Red, Dog, and conjunction as shown in Figure 5-9. While this is an

example of constructive specification, where there are fewer inhabitants in the constructed

concept, we can also perform constructive generalization through means other than those

of consolidation. In particular, consolidation can only generalize from concepts which are

represented similarly. Such an alternative means of constructive generalization is demon-

strated in Figure 5-10. Where consolidation uses abstraction to “zoom out,” here we can

“zoom in” by combining ideas in new ways and introducing new and more particular types.

This can amount to one-off search or sampling of concepts that fit together (in the type-

theoretic way; e.g. you cannot perform procedural application with an object that is not a

procedure).
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Red = { · · · }
Dog = { · · · }
conjunction : Concept→ Concept→ Concept

conjunction A B = {a : A | ∃b:B. a = b}
Red-Dog = conjunction Red Dog

Figure 5-9: Construction of the Red-Dog concept in a pure type system.
Note that while universal quantification is a feature of pure type systems,
existential quantification is not. However, it is nonetheless constructable as
proven by Geuvers [1993].

Gödel-Incompleteness = { · · · }
Escher-Tessellation = { · · · }
Bach-Fugue = { · · · }
disjunction : Concept→ Concept→ Concept

disjunction A B = {a | ∃C:{A, B}. ∃c:C. c = a}
Strange-Loop = conjunction Self

(disjunction Gödel-Incompleteness
(disjunction Escher-Tesselation

Bach-Fugue))

Figure 5-10: Construction of an interpretation of the Strange-Loop
concept, a thesis of Hofstadter [1979]. Here we assume the conjunction

concept defined in Figure 5-9.

Placeholder filling constructs new types by gradually specifying meaning over time.

This is analogous to “Quinian bootstrapping” of Carey [2009], which provides flexible ways

of introducing partial forms of knowledge. This may amount to intentional learning over

time, where search/sampling of underspecified concepts is more common and where muta-

tion is permitted for fragments of those concepts. These types do not need to carry much

meaning until they have been constructed sufficiently. I.e., triviality or nonsense may be

generated during this process. An example for the beginnings of an idea of Darwinian evo-

lution is illustrated in Figure 5-11. This provides for novelty by constructing new concepts

and trying to find inhabitants or otherwise make sense of them.
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Organism = ∅

Organism = {O | ∃procreate:O→ O→ O. true}

Organism = {O | ∃procreate:O→ O→ O. ∀a, b ∈ O. procreate a b ̸∈ {a, b}}

Organism = {O | ∃procreate:O→ O→ O. ∀a, b ∈ O. procreate a b ̸∈ {a, b}}
evolution : ∀O:Organism. [O]→ [O]

Organism = {O | ∃procreate:O→ O→ O. ∀a, b ∈ O. procreate a b ̸∈ {a, b}}
Environment = {Island}
evolution : ∀E:Environment. ∀O:Organism. (E, [O])→ (E, [O])

Figure 5-11: A placeholder-filling construction for the concept of Dar-
winian evolution. The first iteration provides a new symbol. The second
iteration introduces some notion of procreation (particularly sexual repro-
duction). The third iteration further specifies that reproduction results in
mutation. The fourth iteration produces a preliminary idea of evolution, and
the fifth iteration introduces something external to the organisms (i.e. an
environment) as a factor in that process. We use [X] to denote collections of
inhabitants of a particular X.

5.3.5 Inducing search procedures and probabilistic models

We mentioned in Section 3.7 Pure type systems a programming language feature called

“elaborator reflection.” This feature allows certain type-directed synthesis procedures to

be implemented within the language itself, thereby enabling a form of learning to learn.

In our framework, this means a synthesis procedure (c.f. Section 5.3.1 Synthesis) is itself

an inhabitant of a concept and therefore subject to all of the learning capacities described

earlier in this section.

Similarly, probabilistic models are expressible both as objects and as types within our

approach, as are various modeling and inference techniques. These probabilistic models

may lie in the role of concepts which are distributional such as the probability that a

coin comes up heads. However, probabilistic models may also provide inference schemes

in the Bayesian interpretation — probability as a measure of belief — by interacting with

information available in the form of objects and types. Probabilistic programs together
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with inference techniques provide a means for generalizing functions as distributions and

evaluation as as sampling [Mansinghka, 2009]. This is compatible with our system as long

as the underlying computational substrate supports nondeterminism.

5.4 Perception, memory, and cognition

In this section, we answer question VIII proposed at the beginning of this chapter: where

do concepts meet perception? We start with high-level descriptions of these three factors

as they relate to our approach. Perception is uncontrollable12 and determines the space

in which thought occurs. Memory is the integration of those spaces over percepts13,

including everything that has been both learned and maintained (but neither everything

that is learnable nor whatever has been learned and unmaintained/forgotten). Cognition

is the production of concepts and their inhabitants and the source of “intention.” It occurs

within the space that resulted from perception and has the capacity to update memory

particularly through the means described in Section 5.3 Learning and conceptual change.

All of the types and constraints assumed in the previous section clearly lead to extreme

combinatorial explosion for almost every learning task we discussed. Through perception

this space becomes limited, reducing from all memory to whatever is known currently, so

we refer to this space as a “scope.” This scope, while described as a function of perception,

may be manipulated to a limited extent at the expense of cognitive effort14. The role

of perception is precisely to limit the scope in which cognition occurs so that it is useful

— to find balance between the combinatorial explosion of the space of everything that

is thinkable to the narrow but highly-expressive space of whatever is apparently relevant.

There is connection here to our work in Section 4.7.3 ContextNet.

Perceptual input analyzers [Carey, 2009] effectively map real-world entities, such as

those which are perceived via a determination process atop sensory organs, to symbols

which refer to them. In our approach, a symbol may be any item of the type hierarchy:

objects (i.e. inhabitants of a concept, which also provide constraints for concepts), types

12 By uncontrollable, we mean that at the lowest level, observation starts at sensory experience which
cannot be influenced by cognition. However, cognition may effect that which is perceived at a conceptual
level, which we discuss in this section.

13 This integration over perceptual space is shallow — it does not assume any propagation of the tools of
Section 5.3 Learning and conceptual change.

14 An alternative formulation of this is that thoughts are perceived, and hence cognition doesn’t change
the scope directly but only through perception.
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(i.e. a concept), higher-order types (i.e. sets of concepts). As such, search procedures

and probabilistic models are also subject to perceptual localization, per Section 5.3.5. By

constructing a set of objects, input analyzers determine a set of concepts that they inhabit.

These objects and concepts comprise the scope of constraints and types used in cognition.

How do these input analyzers come to be? Developmental science suggests some of them may

be innate [Spelke, 1998; Carey, 2009]. We adopt this notion, and further add that there are

constructions that can be made from them. Deductive procedures, most notably conjunction

(AND) and disjunction (OR) provide a means for composing perceptual input analyzers

without adopting sophisticated machinery reserved for cognition. There is a correspondence

between perceptual input analyzers and connectionist models like artificial neural networks

which gives insight and motivation for the introduction of such deductive procedures. Such

deductive procedures accord to an added layer (increased depth) of neurons in a neural

network. An increased in depth yields exponentially increased expressivity in a deep neural

network, thereby permitting a constructive and connectionist perceptual mapping to range

over many concepts not were not effectively expressible in a shallower network [Poole et al.,

2016]. It is for this practical reason that we suggest the capacity for primitive compositions

of perceptual input analyzers.

The perception of these phenomena in our framework follows from memory, as ma-

nipulated by cognition, and by the synthesis of concept inhabitants (c.f. Section 5.3.1

Synthesis). Hallucination may occur when conceptual inhabitants are realized that are of

a perceptive nature despite not being the result of perception15. Along these lines, sim-

ulation is provided. When cognition determines inhabitants of concepts, new constraints

may be introduced which further determine constraints on inhabitants of other concepts

in scope. The repetition of this process yields simulation. Hence, physical simulation may

be scoped in real or hallucinated settings, depending on the determination of perception16.

The presence of probabilistic programs as procedures for determining concept inhabitants

permits its use as a simulation mechanism, which conditions on objects in scope to provide

sampling and inference.
15 By “of a perceptive nature” we mean concept inhabitants that are may be determined by the output

of some perceptual input analyzer. Otherwise we simply refer to the generated inhabitants as exactly that
— not of a “hallucinatory” nature.

16 The distinction between “real” and “hallucinated” becomes more vague, as both are perceived. As a
result, the two need not be distinguished. However, other concepts in scope may associate those objects with
a notion of implausibility, thereby creating a determiner that decides whether objects are real or hallucinated.
This implausibility distinction would aid in counterfactual reasoning.
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Cognition itself involves every procedure of Section 5.3 Learning and conceptual change.

The restriction of cognition to scope makes this learning tractable by dramatically reducing

both the number of constraints and the size of the search space. We note that “learning” is

not restricted to concept learning, as our methods can be used to find inhabitants of con-

cepts by propagating type-based constraints. This habitation yields objects which may be

perceived as hallucination, as explained in the paragraph above. Habitation may manifest

as decision-making, identification of particular causal properties, modifying search proce-

dures and probabilistic models, or the fine-tuning of object-level statements that arose from

perception. All of these processes that cognition accounts for demonstrates that conceptual

change effectively changes the way the system “thinks.”

Foundational to many models of this chapter has been a notion of use. This provides

an account for choice of representation — whether conceptual structure is worthy of main-

taining — and thereby explains conceptual change. We call this the reconciliation between

co-occurring conceptual structures: whether to replace-and-transfer from one conceptual

structure to another, to keep conceptual structures and maintain transformations between

them, or to disregard (i.e. forget) a conceptual structure entirely. We believe that a combi-

nation of Kolmogorov complexity and runtime analyses can determine whether a proposed

type-level restructuring is worthy of one of these cases [Solomonoff, 1964; Kolmogorov, 1968;

Chaitin, 1969]. By measuring which which structure is “simpler” (in terms of information

entropy) and “more efficient” (in terms of running time), a suitable judgement can be made

for choice of representation. We refer to this as “conceptual complexity.” More concretely,

we leverage the objects and types determined by the present scope. We measure the total

description length of the types relative to the declarative type-level logic of a pure type

system (the representation we adopt, c.f. Section 3.7 Pure type systems and Section 5.2

Representation and role). We further measure the description length of the objects that are

represented via those types relative to the computational substrate (whatever the pure type

system exists atop of, e.g. lambda calculus as in Section 3.5 or a term rewriting system as

in Section 3.6). Running time is another factor of our measure which yields something like

a description length of objects but specifically in terms of other objects (e.g. the length of

object “plus 18 13” given the procedure object plus)17. See Figure 5-12 for an illustra-

17 The reader may note that the halting problem makes this incalculable. However, this can be avoided
by establishing a finite limit on computational cost associated with program execution, a common practice
when systems compute on untrusted programs. If this finite limit is surpasses, the length may be ruled as
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tion of these three complexity measures. The objects in scope may be provided by both

episodic replay (the recall of real experience) and hallucination (objects that are the product

of cognition), both of which are notoriously present during dreaming [Fosse et al., 2003].

These complexity measures for conceptual structures permits useful comparison between

co-occurring conceptual structures — where “co-occurring” means that the they exist in

the same scope (such that the same objects constrain each conceptual structure). We hy-

pothesize a function which, given these three complexity measures for each of a number

of conceptual structures, determines what items should be written in terms of a particular

structure.

Nat = {zero} ∪ {succ n | n ∈ Nat}
plus : { plus : Nat→ Nat→ Nat

| ∀a, b, c ∈ Nat. plus a (plus b c) = plus (plus a b) c

∧ ∀a, b ∈ Nat. plus a b = plus b a

∧ ∀a ∈ Nat. plus zero a = a }

(a)

plus zero a = a

plus (succ a) b = succ (plus a b)

(b)

[(3 + 4)] plus (succ (succ (succ zero))) (succ (succ (succ (succ zero))))

[1 + (2 + 4)] → succ (plus (succ (succ zero)) (succ (succ (succ (succ zero)))))

[1 + 1 + (1 + 4)] → succ (succ (plus (succ zero) (succ (succ (succ (succ zero))))))

[1 + 1 + 1 + (0 + 4)] → succ (succ (succ (plus zero (succ (succ (succ (succ zero)))))))

[1 + 1 + 1 + 4] → succ (succ (succ (succ (succ (succ (succ zero))))))

(c)

Figure 5-12: Descriptions whose lengths determine three measures of con-
ceptual complexity: (a) type-level, (b) object-level, and (c) runtime-level.
If this examples co-occurs with a representation like that of Figure 5-7b,
measurements of these complexities may demonstrate that it is an infe-
rior representation and would be replaced. (Notably, addition is runtime-
logarithmic in a digital representation whereas this incremental representa-
tion is runtime-linear.)

infinite thereby making the representation in question unworthy.
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5.5 Discussion and Future Work

We present a computational formalism for conceptual role. However, there are ways that our

exposition does not satisfy the essence of a scientific formalism. The approach presented in

this chapter is in dire need of thorough theory and experimentation to justify the approach.

The framework must be implemented at least in some significant part in order to evaluate

any aspect of the approach. Most of the motivation of our approach comes from intuition

and loosely-related empirical studies while our reliance on research particularly focused on

computational models of cognition was somewhat lacking. We believe there is plenty that

needs to be done for computational models of cognition.

An apparent step is to implement a language with a rich type system which has some

of the procedures of Section 5.3 Learning and conceptual change built-in. However, many

aspects of our approach can be modeled without this foundation. We believe that the best

way to assess our approach is by breaking it down into smaller systems that can be modeled

and experimented upon in isolation. Only once emergent properties of those underlying

subsystems is determined can they be put together meaningfully, assuming they are shown

to be fruitful.

Therefore the first thing that should be done is to break apart our theory into many

independent models and to perform empirical computational and psychological studies with

them. The consolidation for probabilistic programs may yield a promising project on its

own — where some probabilistic models may be abstracted into conditional distributions

induced by a deeper probabilistic model if such consolidation would be useful for storage

and computation regarding relevant concepts. Similar may be said for our discussion in Sec-

tion 5.3.5 Inducing search procedures and probabilistic models: many of the necessary tools

already exist, and the application of such techniques could extend to a variety of program

induction tasks and machine learning problems. Especially relevant to cognitive science is

the computational account of creating new ideas we discussed in Section 5.3.4 Construc-

tion of concepts, which in conjunction with a computational account of conceptual change

itself (particularly the conceptual complexity measure described in Section 5.4 Perception,

memory, and cognition) provide a promising research path that should be explored.
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