
Theory Learning as Informed Stochastic

Program Synthesis

Lucas E. Morales {lucasem}

1 Introduction

Theories, as formal logical expressions in the language of thought which rep-

resents laws as patterns, are intuitively developed by children. I expand

on an algorithm which performs stochastic search on theory space and the

then-generated space of models and explanations given experiences and ob-

servations [1]. The grammatical formalism of a language of thought gives the

agent generative capacity for a hierarchical Bayesian framework of theory

and model spaces on which a Monte-Carlo Markov-chain (MCMC) stochas-

tic search algorithm is performed. Annealing is done so MCMC will visit all

theories with probability proportional to their posterior probability.

The algorithm I propose guides stochastic search by sampling observa-

tions as data corresponding to the given model, using experience and a com-

bination of exploration and exploitation of reality upon agent action. There

are two phases to the algorithm: wake, and sleep. In the wake phase, the

agent is given observations and a probing mechanism to analyze them, giving

the agent ability to explore and exploit understanding. In the sleep phase, the

agent retrospectively performs stochastic search and uses the observations to

determine a more fitting theory and model for the next wake phase.

1

2 Theories and Models

A theory may be synthesized as a program in the “language of thought”

(LoT) system, formalized with probabilistic lambda calculus, to utilize the

compositional necessities of functional languages and the probabilistic be-

haviors of the natural world [2].

Theories take a set of parameters which yield a model to fill the knowledge

gap between observation and higher-level structural understanding.

For clarity of concept, I will occasionally use the example of determining

what Euclidean functions best describe a set of particular 2D graphs. For a

simple non-probabilistic parabola centered at the origin, the theory T may

solely be the exponentiation operator. This theory, in total, has two open

placeholders R (expression 1) — the two operands of exponentiation for the

theory (expression 2). For the parabola we’re trying to model, there is one

parameter θ1 = 2 (expression 3) with the corresponding parameter-mapping

PM (expression 4). Finally, the remaining placeholders are dimensions of

independent variability. In this case, the domain X of a single dimension

of real numbers (expression 5) which has the domain-mapping DM on the

remaining open placeholders (expression 6). Thus, this particular model can

be sufficiently described as follows:

R := (r1, r2) (1)

T (R) := (pow r1 r2) (2)

Θ := (θ1) = (2) (3)

PM : (θ1)→ (r2) (4)

X := (x1 ∈ R) (5)

DM : (x1)→ (r1) (6)

This is not the only model which describes the observed function, how-

ever. Another one which would be equally correct has no parameter, and

T (R) = (mul r1 r2) with the single dimension of the domain mapped to both

2

placeholders DM : (x1, x1)→ (r1, r2).

If the pattern wasn’t exactly the same between observations, such as

parabolas centered anywhere and not necessarily the origin, then probabilistic

language primitives such as uniform and gauss may be used. In this scenario,

the theory may be

T (R) := (sum (pow (sub r1 (gaussian)) r2) (gaussian))

where the gaussian samples are made for each particular model.

3 Model Inference

Bayes’ theorem provides a scoring mechanism for a particular model M which

implements theory T given observations D:

P (M |D,T) ∝ P (D|M)P (M |T)

The model likelihood P (D|M) comes from an approximation margin of

the model with observation. The model likelihood uses samples of observation

to calculate numerical error of a model’s predictions. The performance of

a model in this regard yields implicit negative evidence to discredit poor

models [3]. The likelihood is thus the product of coefficients of determination

using the sum of squares over residuals as compared to the variance of each

observation. For a set of observations D where each observation i holds a

domain vector x and range vector y,

P (D|M) =
∏
i∈D

(
1−

∑
x,y∈i(y −M(x))2∑

x,y∈i(y − ȳ)2

)

The model prior P (M |T) adheres to the principle that theories should

closely pertain to their output with little dependence on mediating factors.

Models that have fewer parameters |Θ| are more likely a priori, as they have

fewer degrees of freedom and thus prevent over-fitting. This means that

choosing a theory is often more important than choosing the model, because

3

parameter count is heavily contingent on the theory and the domain space

— both of which are independent of the model [4]. Models are preferential to

dependence on more observed parameters |X|. Models are also more likely

a priori if the dimension of the range of the domain-mapping |DM(X)| is

greater than that of the domain itself (i.e. the domain accounts for more open

placeholders), and likewise for the parameter-mapping. Using the notation

from the section on theories and models:

P (M |T) ∝ |DM(X)| (1 + |PM(Θ)|)
(1 + |Θ|)2

4 Theory Inference

Bayes’ theorem provides a scoring mechanism for a theory T in the theory

space U (governed by the infinite space of the language of thought) given

observations D:

P (T |D,U) ∝ P (D|T)P (T |U)

Because theories act indirectly with the data they help model, the theory

likelihood P (D|T) is expanded to a sum of model likelihoods:

P (D|T) =
∑
M

P (D|M)P (M |T)

The potentially infinite model space for a particular theory is contracted

when determining the theory likelihood by fixing observations as parameters

to the theory and considering the model parameters Θ as the variable do-

main. Sampling from the model space can be done by maximizing coherence

(i.e. approximate equality) between parameters in different fixed observation

settings. This yields likely models which serve as representatives for the the-

ory. The model likelihoods and priors are computed according to the model

inference section above.

The theory prior P (T |U) is a lexically-determined score for a theory,

holding two assumptions:

4

1. relevance of the size principle [5], having lower probability for more

complex hypotheses.

2. recursive complexity, that recursive theories are less probable.

A syntactic prior defines a measurable prior for a probabilistic context-free

Horn clause grammar [6] by evaluating the product of probabilities for each

item in the parse tree. A probabilistic context-free grammar can be generated

by expanding lambda expressions to their primitive functions called in a

consistent manner, where functions can only be applied to valid arguments.

This first assumption is implemented as the prior according to the rational

rules model: PRR(T). For the lexical prior to assume recursive lexicons are

less likely a priori, a free parameter γ exists:

P (T) ∝

{
γ · PRR(T) if T uses recursion

(1− γ) · PRR(T) otherwise

Stochastic search is done in theory space using a grammar-based Metropo-

lis Hastings (MH) inference algorithm as is implemented in the Church lan-

guage [7]. The algorithm essentially follows a Markov chain on the space of

valid lexical structures. A tentative new theory T ′ is sampled from the pro-

posal distribution which constructs a new theory based on its predecessor.

It is generated with a distribution on steps of removing a lexicon (expres-

sion 7) or adding a lexicon as a new higher-order composition (expression 8),

as a compositional substitute for an existing lexicon (expression 9), or as a

substitute for an open parameter (expression 10). There are finitely many

possible steps for transition, so a sample can be correctly taken from the

space. More will be discussed on this transition generation in the stochastic

program synthesis section of this paper.

5

(pow (sub r1 (gaussian)) r2) −→ (pow r1 r2) (7)

(pow (sub r1 (gaussian)) r2) −→ (sum (pow (sub r1 (gaussian)) r2) (gaussian))

(8)

(pow (sub r1 (gaussian)) r2) −→ (pow (mul r1 (gaussian)) r2) (9)

(pow (sub r1 (gaussian)) r2) −→ (pow (sub r1 (gaussian)) (mul r2 r3))

(10)

The acceptance probability of a sample is computed as

a =
P (T ′|D,U)

P (T |D,U)
· Q(T |T ′)

Q(T ′|T)
=
P (T ′|D,U)

P (T |D,U)

where P (T |D,U) is the posterior probability described above and Q(T ′|T)

is the proposal density. The proposal density serves to add directionality to

theory sampling in MH. The lexical structure can go either way in simplicity

or complexity, which the posterior accounts for, and thus the proposal density

is deemed symmetric and not a factor in the acceptance probability. To aid

convergence, this acceptance probability is slightly exponentiated as time

progresses and more stochastic steps are taken.

The Metropolis Hastings algorithm is used as a Markov chain Monte Carlo

method to emulate the stochastic computational search that’s hypothesized

to be done in theory learning and acquisition in young children. It frequents

more probable theories but doesn’t disregard out-of-the-box thinking and

random innovation.

5 Observation and Action

In the wake phase of the algorithm, the agent makes observations. For a

particular observation, the agent chooses a small number of representative

samples. The agent can select samples at a similar concentration to ones it al-

ready has to attempt to reaffirm its current theory and model (exploitation),

6

or it can select samples that are unlike the those it already has (exploration).

These data will be used for inference and stochastic progression in the sleep

phase. In the 2D graph example, this step is like being given a function

which you can only interact with by taking samples.

Let a normal distribution on previously observed samples serve as a de-

fault exploitation-based probabilistic model. The determination of the agent

as to whether to exploit or explore is thus quantified as deviation from the

mean. Making the decision for a particular sample is organized with the like-

lihood of the agent’s current model, P (D|M). More likely models are met

with a higher probability of larger deviations in sampling. Less likely mod-

els are intuitively met with exploitation to help determine how accurate the

model is, which will result in the model having either increased or decreased

likelihood (thus effecting the next iteration of sampling and of stochastic

program synthesis).

For model likelihood α = P (D|M), the deviation is sampled from the

distribution with tunable parameter β:

D(α) = αβ · uniform + (1− α)β · gauss

Sampling observations for data in this manner ensures stochastic anneal-

ing by selecting data points probabilistically for improved theory and model

accuracy assurance.

6 Program Specification

The language on which programs are synthesized is a probabilistic lambda

calculus. The selection of primitives is designed to specify parametrizable

functions with multi-dimensional domains and ranges, though many primi-

tives are isolated to a single dimension of output. These primitives are not

disjoint in their capabilities and may be derivable from other primitives.

The selection of primitives corresponds to the built-in functions and ca-

pabilities of Church, a functional probabilistic programming language.

7

New functions can be learned using these language primitives. When a

pattern of functions is used frequently, a small finitely-sized space of learned

function definitions is populated with a new assignment for the pattern.

(define (isItem item) (lambda (otherItem) (if (eq? item otherItem) 1 0)))

After a utility such as isItem is defined, a theory for counting falsehoods

in a boolean observation system (where many true/false values represent a

single input, and integer output) may now be easily constructed (where r1 is

assigned #f in the model parameterization):

T (R) := (sum (map (isItem r1) r2))

This creation of new simpler functions from frequent complex primitive pat-

terns allows for a more accurate theory prior P (T |U) and improves the ca-

pabilities of the Metropolis Hastings sampler. Constructs like isItem are

commonplace, and should thus be easily permitted by stochastic program

synthesis in the MH theory sampler.

7 Stochastic Program Synthesis

The generation of new programs in the Metropolis Hastings sampler is non-

trivial for such a high level computationally universal language such as Church.

To obtain the proposal distribution P (T ′|T) on which samples are taken for

MH theory search, every transition step s is associated a frequency f(s). A

set of frequency-explicit rules composes a transition step.

By default, every symbol change is given a frequency value of 1. Use of

custom-defined functions has a particular tunable frequency value (e.g. 5).

Different frequency rates may be applied to whether the step is a removal, a

self-composition, a lexicon substitution, or an open-parameter substitution.

To maintain ease of certain common code paradigms such as conditionals,

map-reduce, and lambda expressions, they are assigned a low frequency factor

(e.g. 0.1). Each of these rules r is assigned a frequency f(r) (notation here

is that f is defined on single items as well as sets of those items).

8

When multiple frequency-defined rules apply (such as self-composition

with a function), the harmonic mean of applicable rules’ frequencies is taken.

For step s = {r1, . . . , rn},

f(s) =
n∑

r∈s
1

f(r)

Some functions, such as map must be expanded with function arguments in

order to operate. These higher-order functions are expanded into immediate

child possibilities, with the resulting step frequency ultimately being linearly

halved for each higher-order step to a small pre-defined maximum depth (e.g.

2).

Normalizing over all transition steps for a particular program yields the

proposal distribution for stochastic program synthesis in the Metropolis Hast-

ings theory sampler.

8 Discussion

I have specified an algorithmic model for theory learning, based on the bipha-

sic dichotomy of observation (wake) and learning (sleep). It uses a hierarchi-

cal Bayesian framework and stochastic theory generation in the space of a

language-of-thought program to acquire theories, and uses theory confidence

(sample model likelihood) to make informed samples to better the agent’s

future theory learning.

I believe the major step to improve this algorithm is abstract the two

scales of theories and models into a hierarchy of any scale, which may have

recursive qualities. If Θ parameters could be non-constant functions like

those used in theories and could have their own lower-scale hierarchical state

for parameters of those functions, then theory structures would be recur-

sively learned rather than only flat low-level theories themselves tailored to

a particular task/set of observations. This would primarily be useful if there

were many different theories being learned, so such a paradigm is intuitive

and serves a better computational model for intelligence and cognition.

9

References

[1] Ullman, T. D., Goodman, N. D., & Tenenbaum, J. B. (2012). Theory

learning as stochastic search in a language of thought. Cognitive Develop-

ment 27 (4), 455-480.

[2] Goodman, N. D., Tenenbaum, J. B., & Gerstenberg, T. (2014). Concepts

in a probabilistic language of thought. Concepts: New Directions, MIT

Press.

[3] Tenenbaum, J. B. & Griffiths, T. L. (2001). The rational basis of repre-

sentativeness. Proceedings of the 23rd Annual Conference of the Cognitive

Science Society 1036-1041.

[4] Katz, Y., Goodman, N. D., Kersting, K., Kemp, C., & Tenenbaum, J.

B. (2008). Modeling semantic cognition as logical dimensionality reduc-

tion. Proceedings of the 13th Annual Conference of the Cognitive Science

Society.

[5] Tenenbaum, J. B. (1999). A bayesian framework for concept learning.

Ph.D. thesis, Massachusetts Institute of Technology.

[6] Goodman, N. D., Tenenbaum J. B., Feldman J., & Griffiths, T. L.

(2008b). A rational analysis of rule-based concept learning. Cognitive Sci-

ence 32 (1), 108154.

[7] Goodman, N. D., Mansinghka, V. K., Roy, D. M., Bonawitz, K., &

Tenenbaum, J. B. (2008a). Church: a language for generative models.

Uncertainty in Artificial Intelligence.

10

